97 research outputs found
Massive Born-Infeld and other dual pairs
We consider massive dual pairs of p -forms and ( D − p − 1)-forms described by non-linear Lagrangians, where non-linear curvature terms in one theory translate into non-linear mass-like terms in the dual theory. In particular, for D = 2 p and p even the two non-linear structures coincide when the non-linear massless theory is self-dual. This state of affairs finds a natural realization in the four-dimensional massive N = 1 supersymmetric Born-Infeld action, which describes either a massive vector multiplet or a massive linear (tensor) multiplet with a Born-Infeld mass-like term. These systems should play a role for the massive gravitino multiplet obtained from a partial super-Higgs in N = 2 Supergravity
Uniform gradient expansions
Cosmological singularities are often discussed by means of a gradient expansion that can also describe, during a quasi-de Sitter phase, the progressive suppression of curvature inhomogeneities. While the inflationary event horizon is being formed the two mentioned regimes coexist and a uniform expansion can be conceived and applied to the evolution of spatial gradients across the protoinflationary boundary. It is argued that conventional arguments addressing the preinflationary initial conditions are necessary but generally not sufficient to guarantee a homogeneous onset of the conventional inflationary stage
Status of LHC Searches for SUSY without R-Parity
In this contribution we briefly review the status of current searches for supersymmetry at the Large Hadron Collider, focusing especially on viable sub-TeV colored superpartners which can appear in nonstandard scenarios. The presented material covers mostly signals that do not crucially rely on the presence of large missing transverse momentum, with special emphasis on R-parity violating supersymmetry. For some scenarios the prospects for the next run of the Large Hadron Collider and future machines are also presented
On the predictiveness of single-field inflationary models
We re-examine the predictiveness of single-field inflationary models and discuss how an unknown UV completion can complicate determining inflationary model parameters from observations, even from precision measurements. Besides the usual naturalness issues associated with having a shallow inflationary potential, we describe another issue for inflation, namely, unknown UV physics modifies the running of Standard Model (SM) parameters and thereby introduces uncertainty into the potential inflationary predictions. We illustrate this point using the minimal Higgs Inflationary scenario, which is arguably the most predictive single-field model on the market, because its predictions for A S , r and n s are made using only one new free parameter beyond those measured in particle physics experiments, and run up to the inflationary regime. We find that this issue can already have observable effects. At the same time, this UV-parameter dependence in the Renormalization Group allows Higgs Inflation to occur (in principle) for a slightly larger range of Higgs masses. We comment on the origin of the various UV scales that arise at large field values for the SM Higgs, clarifying cut off scale arguments by further developing the formalism of a non-linear realization of SU L (2) × U(1) in curved space. We discuss the interesting fact that, outside of Higgs Inflation, the effect of a non-minimal coupling to gravity, even in the SM, results in a non-linear EFT for the Higgs sector. Finally, we briefly comment on post BICEP2 attempts to modify the Higgs Inflation scenario
Higgs form factors in associated production
We further develop a form factor formalism characterizing anomalous interactions of the Higgs-like boson ( h ) to massive electroweak vector bosons ( V ) and generic bilinear fermion states . Employing this approach, we examine the sensitivity of pp → → V h associated production to physics beyond the Standard Model, and compare it to the corresponding sensitivity of h → V decays. We discuss how determining the Vh invariant-mass distribution in associated production at LHC is a key ingredient for model-independent determinations of hV interactions. We also provide a general discussion about the power counting of the form factor’s momentum dependence in a generic effective field theory approach, analyzing in particular how effective theories based on a linear and non-linear realization of the SU(2) L × U(1) Y gauge symmetry map into the form factor formalism. We point out how measurements of the differential spectra characterizing h → V decays and pp → → Vh associated production could be the leading indication of the presence of a nonlinear realization of the SU(2) L × U(1) Y gauge symmetry
Doubly self-dual actions in various dimensions
The self-duality of the N = 1 supersymmetric Born-Infeld action implies a double self-duality of the tensor multiplet square-root action when the scalar and the antisymmetric tensor are interchanged via Poincaré duality. We show how this phenomenon extends to D space-time dimensions for non-linear actions involving pairs of forms of rank p and D − p − 2. As a byproduct, we construct a new two-field generalization of the Born-Infeld action whose equations of motion are invariant under a U(1) duality. In these systems, the introduction of Green-Schwarz terms results in explicit non-linear mass-like terms for dual massive pairs
Vector meson spectral function and dilepton production rate in a hot and dense medium within an effective QCD approach
The properties of the vector meson current-current correlation function and its spectral representation are investigated in details with and without isoscalar-vector interaction within the framework of effective QCD approach, namely Nambu-Jona-Lasinio (NJL) model and its Polyakov Loop extended version (PNJL), at finite temperature and finite density. The influence of the isoscalar-vector interaction on the vector meson correlator is obtained using the ring resummation known as the Random Phase Approximation (RPA). The spectral as well as the correlation function in PNJL model show that the vector meson retains its bound property up to a moderate value of temperature above the phase transition. Using the vector meson spectral function we, for the first time, obtained the dilepton production rate from a hot and dense medium within the framework of PNJL model that takes into account the nonperturbative effect through the Polyakov Loop fields. The dilepton production rate in PNJL model is enhanced compared to NJL and Born rate in the deconfined phase due to the suppression of color degrees of freedom at moderate temperature. The presence of isoscalar-vector interaction further enhances the dileption rate over the Born rate in the low mass region. Further, we also have computed the Euclidean correlation function in vector channel and the conserved density fluctuation associated with temporal correlation function appropriate for a hot and dense medium. The dilepton rate and the Euclidean correlator are also compared with available lattice data and those quantities in PNJL model are found to agree well in certain domain
Bootstrapping SCFTs with four supercharges
We study the constraints imposed by superconformal symmetry, crossing symmetry, and unitarity for theories with four supercharges in spacetime dimension 2 ≤ d ≤ 4. We show how superconformal algebras with four Poincaré supercharges can be treated in a formalism applicable to any, in principle continuous, value of d and use this to construct the superconformal blocks for any d ≤ 4. We then use numerical bootstrap techniques to derive upper bounds on the conformal dimension of the first unprotected operator appearing in the OPE of a chiral and an anti-chiral superconformal primary. We obtain an intriguing structure of three distinct kinks. We argue that one of the kinks smoothly interpolates between the d = 2, N = 2 , 2 minimal model with central charge c = 1 and the theory of a free chiral multiplet in d = 4, passing through the critical Wess-Zumino model with cubic superpotential in intermediate dimensions
No unitary bootstrap for the fractal Ising model
We consider the conformal bootstrap for spacetime dimension 1 < d < 2. We determine bounds on operator dimensions and compare our results with various theoretical and numerical models, in particular with resummed ϵ -expansion and Monte Carlo simulations of the Ising model on fractal lattices. The bounds clearly rule out that these models correspond to unitary conformal field theories. We also clarify the d → 1 limit of the conformal bootstrap, showing that bounds can be — and indeed are — discontinuous in this limit. This discontinuity implies that for small ϵ = d − 1 the expected critical exponents for the Ising model are disallowed, and in particular those of the d − 1 expansion. Altogether these results strongly suggest that the Ising model universality class cannot be described by a unitary CFT below d = 2. We argue this also from a bootstrap perspective, by showing that the 2 ≤ d < 4 Ising “kink” splits into two features which grow apart below d = 2
Precise determination of the Higgs mass in supersymmetric models with vectorlike tops and the impact on naturalness in minimal GMSB
We present a precise analysis of the Higgs mass corrections stemming from vectorlike top partners in supersymmetric models. We reduce the theoretical uncertainty compared to previous studies in the following aspects: (i) including the one-loop threshold corrections to SM gauge and Yukawa couplings due to the presence of the new states to obtain the D R ¯ parameters entering all loop calculations, (ii) including the full momentum dependence at one-loop, and (iii) including all two-loop corrections but the ones involving g 1 and g 2 . We find that the additional threshold corrections are very important and can give the largest effect on the Higgs mass. However, we identify also parameter regions where the new two-loop effects can be more important than the ones of the MSSM and change the Higgs mass prediction by up to 10 GeV. This is for instance the case in the low tan β , small M A regime. We use these results to calculate the electroweak fine-tuning of an UV complete variant of this model. For this purpose, we add a complete 10 and 10 ¯ of SU(5) to the MSSM particle content. We embed this model in minimal Gauge Mediated Supersymmetry Breaking and calculate the electroweak fine-tuning with respect to all important parameters. It turns out that the limit on the gluino mass becomes more important for the fine-tuning than the Higgs mass measurements which is easy to satisfy in this setup
- …
