272 research outputs found

    Thermodynamic Properties of the Piecewise Uniform String

    Full text link
    The thermodynamic free energy F is calculated for a gas whose particles are the quantum excitations of a piecewise uniform bosonic string. The string consists of two parts of length L_I and L_II, endowed with different tensions and mass densities, adjusted in such a way that the velocity of sound always equals the velocity of light. The explicit calculation is done under the restrictive condition that the tension ratio x = T_I/T_II approaches zero. Also, the length ratio s = L_II/L_I is assumed to be an integer. The expression for F is given on an integral form, in which s is present as a parameter. For large values of s, the Hagedorn temperature becomes proportional to the square root of s.Comment: 32 pages, latex, no figure

    Soft gluon resummation for squark and gluino pair-production at hadron colliders

    Get PDF
    We report on the study of soft gluon effects in the production of squarks and gluinos at hadron colliders. Close to production threshold, the emission of soft gluon results in the appearence of large logarithmic corrections in the theoretical expressions. In order to resum these corrections at next-to-leading-logarithmic accuracy appropriate one-loop anomalous dimensions have to be calculated. We present the calculation of the anomalous dimensions for all production channels of squarks and gluinos and provide numerical predictions for the Tevatron and the LHC.Comment: 6 pages, talk given at RADCOR 2009 - 9th International Symposium on Radiative Corrections (Applications of Quantum Field Theory to Phenomenology) October 25-30 2009, Ascona, Switzerlan

    Probing the Structure of Halo Nuclei

    Get PDF
    Our understanding of halo nuclei has so far relied on high-energy scattering and reactions, but a number of uncertainties remain. I discuss in general terms the new range of observables which will be measured by experiments around the Coulomb barrier, and how some details of the reaction mechanisms still need to be clarified.Comment: Proceedings of FUSION97 conference (March 1997), South Durras, Australia. Submitted to J. Physics G: special issue `Heavy ion collisions at near barrier energies'. No figures; uses IOPConf.sty (included

    Non-extremal Localised Branes and Vacuum Solutions in M-Theory

    Get PDF
    Non-extremal overlapping p-brane supergravity solutions localised in their relative transverse coordinates are constructed. The construction uses an algebraic method of solving the bosonic equations of motion. It is shown that these non-extremal solutions can be obtained from the extremal solutions by means of the superposition of two deformation functions defined by vacuum solutions of M-theory. Vacuum solutions of M-theory including irrational powers of harmonic functions are discussed.Comment: LaTeX, 16 pages, no figures, typos correcte

    Mean-Field Equations for Spin Models with Orthogonal Interaction Matrices

    Full text link
    We study the metastable states in Ising spin models with orthogonal interaction matrices. We focus on three realizations of this model, the random case and two non-random cases, i.e.\ the fully-frustrated model on an infinite dimensional hypercube and the so-called sine-model. We use the mean-field (or {\sc tap}) equations which we derive by resuming the high-temperature expansion of the Gibbs free energy. In some special non-random cases, we can find the absolute minimum of the free energy. For the random case we compute the average number of solutions to the {\sc tap} equations. We find that the configurational entropy (or complexity) is extensive in the range T_{\mbox{\tiny RSB}}. Finally we present an apparently unrelated replica calculation which reproduces the analytical expression for the total number of {\sc tap} solutions.Comment: 22+3 pages, section 5 slightly modified, 1 Ref added, LaTeX and uuencoded figures now independent of each other (easier to print). Postscript available http://chimera.roma1.infn.it/index_papers_complex.htm

    Next to leading order spin-orbit effects in the motion of inspiralling compact binaries

    Full text link
    Using effective field theory (EFT) techniques we calculate the next-to-leading order (NLO) spin-orbit contributions to the gravitational potential of inspiralling compact binaries. We use the covariant spin supplementarity condition (SSC), and explicitly prove the equivalence with previous results by Faye et al. in arXiv:gr-qc/0605139. We also show that the direct application of the Newton-Wigner SSC at the level of the action leads to the correct dynamics using a canonical (Dirac) algebra. This paper then completes the calculation of the necessary spin dynamics within the EFT formalism that will be used in a separate paper to compute the spin contributions to the energy flux and phase evolution to NLO.Comment: 25 pages, 4 figures, revtex4. v2: minor changes, refs. added. To appear in Class. Quant. Gra

    Photometric redshifts for the Kilo-Degree Survey. Machine-learning analysis with artificial neural networks

    Get PDF
    We present a machine-learning photometric redshift analysis of the Kilo-Degree Survey Data Release 3, using two neural-network based techniques: ANNz2 and MLPQNA. Despite limited coverage of spectroscopic training sets, these ML codes provide photo-zs of quality comparable to, if not better than, those from the BPZ code, at least up to zphot<0.9 and r<23.5. At the bright end of r<20, where very complete spectroscopic data overlapping with KiDS are available, the performance of the ML photo-zs clearly surpasses that of BPZ, currently the primary photo-z method for KiDS. Using the Galaxy And Mass Assembly (GAMA) spectroscopic survey as calibration, we furthermore study how photo-zs improve for bright sources when photometric parameters additional to magnitudes are included in the photo-z derivation, as well as when VIKING and WISE infrared bands are added. While the fiducial four-band ugri setup gives a photo-z bias δz=2e4\delta z=-2e-4 and scatter σz<0.022\sigma_z<0.022 at mean z = 0.23, combining magnitudes, colours, and galaxy sizes reduces the scatter by ~7% and the bias by an order of magnitude. Once the ugri and IR magnitudes are joined into 12-band photometry spanning up to 12 μ\mu, the scatter decreases by more than 10% over the fiducial case. Finally, using the 12 bands together with optical colours and linear sizes gives δz<4e5\delta z<4e-5 and σz<0.019\sigma_z<0.019. This paper also serves as a reference for two public photo-z catalogues accompanying KiDS DR3, both obtained using the ANNz2 code. The first one, of general purpose, includes all the 39 million KiDS sources with four-band ugri measurements in DR3. The second dataset, optimized for low-redshift studies such as galaxy-galaxy lensing, is limited to r<20, and provides photo-zs of much better quality than in the full-depth case thanks to incorporating optical magnitudes, colours, and sizes in the GAMA-calibrated photo-z derivation.Comment: A&A, in press. Data available from the KiDS website http://kids.strw.leidenuniv.nl/DR3/ml-photoz.php#annz

    Multidimensional cut-off technique, odd-dimensional Epstein zeta functions and Casimir energy of massless scalar fields

    Full text link
    Quantum fluctuations of massless scalar fields represented by quantum fluctuations of the quasiparticle vacuum in a zero-temperature dilute Bose-Einstein condensate may well provide the first experimental arena for measuring the Casimir force of a field other than the electromagnetic field. This would constitute a real Casimir force measurement - due to quantum fluctuations - in contrast to thermal fluctuation effects. We develop a multidimensional cut-off technique for calculating the Casimir energy of massless scalar fields in dd-dimensional rectangular spaces with qq large dimensions and dqd-q dimensions of length LL and generalize the technique to arbitrary lengths. We explicitly evaluate the multidimensional remainder and express it in a form that converges exponentially fast. Together with the compact analytical formulas we derive, the numerical results are exact and easy to obtain. Most importantly, we show that the division between analytical and remainder is not arbitrary but has a natural physical interpretation. The analytical part can be viewed as the sum of individual parallel plate energies and the remainder as an interaction energy. In a separate procedure, via results from number theory, we express some odd-dimensional homogeneous Epstein zeta functions as products of one-dimensional sums plus a tiny remainder and calculate from them the Casimir energy via zeta function regularization.Comment: 42 pages, 3 figures. v.2: typos corrected to match published versio
    corecore