44 research outputs found

    Greater neural adaptations following high- vs. low-load resistance training

    Get PDF
    We examined the neuromuscular adaptations following 3 and 6 weeks of 80 vs. 30% one repetition maximum (1RM) resistance training to failure in the leg extensors. Twenty-six men (age = 23.1 +/= 4.7 years) were randomly assigned to a high- (80% 1RM; n = 13) or low-load (30% 1RM; n = 13) resistance training group and completed leg extension resistance training to failure 3 times per week for 6 weeks. Testing was completed at baseline, 3, and 6 weeks of training. During each testing session, ultrasound muscle thickness and echo intensity, 1RM strength, maximal voluntary isometric contraction (MVIC) strength, and contractile properties of the quadriceps femoris were measured. Percent voluntary activation (VA) and electromyographic (EMG) amplitude were measured during MVIC, and during randomly ordered isometric step muscle actions at 10-100% of baseline MVIC. There were similar increases in muscle thickness from Baseline to Week 3 and 6 in the 80 and 30% 1RM groups. However, both 1RM and MVIC strength increased from Baseline to Week 3 and 6 to a greater degree in the 80% than 30% 1RM group. VA during MVIC was also greater in the 80 vs. 30% 1RM group at Week 6, and only training at 80% 1RM elicited a significant increase in EMG amplitude during MVIC. The peak twitch torque to MVIC ratio was also significantly reduced in the 80%, but not 30% 1RM group, at Week 3 and 6. Finally, VA and EMG amplitude were reduced during submaximal torque production as a result of training at 80% 1RM, but not 30% 1RM. Despite eliciting similar hypertrophy, 80% 1RM improved muscle strength more than 30% 1RM, and was accompanied by increases in VA and EMG amplitude during maximal force production. Furthermore, training at 80% 1RM resulted in a decreased neural cost to produce the same relative submaximal torques after training, whereas training at 30% 1RM did not. Therefore, our data suggest that high-load training results in greater neural adaptations that may explain the disparate increases in muscle strength despite similar hypertrophy following high- and low-load training programs.Peer reviewedHealth and Human PerformanceNutritional Science

    Modifications de la force musculaire et de l'activite des motoneurones au cours d'un entrainement isometrique chez l'Homme

    No full text
    SIGLECNRS T 54617 / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Contribution à l'étude des seuils de fatigue neuromusculaires (apport de l'électromyographie)

    No full text
    PARIS5-BU Saints-Pères (751062109) / SudocPARIS5-STAPS (751152102) / SudocSudocFranceF

    A Medical Low-Back Pain Physical Rehabilitation Dataset for Human Body Movement Analysis

    No full text
    International audienceWhile automatic monitoring and coaching of exercises are showing encouraging results in non-medical applications, they still have limitations such as errors and limited use contexts. To allow the development and assessment of physical rehabilitation by an intelligent tutoring system, we identify in this article four challenges to address and propose a medical dataset of clinical patients carrying out low back-pain rehabilitation exercises. The dataset includes 3D Kinect skeleton positions and orientations, RGB videos, 2D skeleton data, and medical annotations to assess the correctness, and error classification and localisation of body part and timespan. Along this dataset, we perform a complete research path, from data collection to processing, and finally a small benchmark. We evaluated on the dataset two baseline movement recognition algorithms, pertaining to two different approaches: the probabilistic approach with a Gaussian Mixture Model (GMM), and the deep learning approach with a Long-Short Term Memory (LSTM). This dataset is valuable because it includes rehabilitation relevant motions in a clinical setting with patients in their rehabilitation program, using a cost-effective, portable, and convenient sensor, and because it shows the potential for improvement on these challenges
    corecore