4,503 research outputs found

    Markov chains, R\mathscr R-trivial monoids and representation theory

    Full text link
    We develop a general theory of Markov chains realizable as random walks on R\mathscr R-trivial monoids. It provides explicit and simple formulas for the eigenvalues of the transition matrix, for multiplicities of the eigenvalues via M\"obius inversion along a lattice, a condition for diagonalizability of the transition matrix and some techniques for bounding the mixing time. In addition, we discuss several examples, such as Toom-Tsetlin models, an exchange walk for finite Coxeter groups, as well as examples previously studied by the authors, such as nonabelian sandpile models and the promotion Markov chain on posets. Many of these examples can be viewed as random walks on quotients of free tree monoids, a new class of monoids whose combinatorics we develop.Comment: Dedicated to Stuart Margolis on the occasion of his sixtieth birthday; 71 pages; final version to appear in IJA

    Directed nonabelian sandpile models on trees

    Full text link
    We define two general classes of nonabelian sandpile models on directed trees (or arborescences) as models of nonequilibrium statistical phenomena. These models have the property that sand grains can enter only through specified reservoirs, unlike the well-known abelian sandpile model. In the Trickle-down sandpile model, sand grains are allowed to move one at a time. For this model, we show that the stationary distribution is of product form. In the Landslide sandpile model, all the grains at a vertex topple at once, and here we prove formulas for all eigenvalues, their multiplicities, and the rate of convergence to stationarity. The proofs use wreath products and the representation theory of monoids.Comment: 43 pages, 5 figures; introduction improve

    On The Determination of MDI High-Degree Mode Frequencies

    Full text link
    The characteristic of the solar acoustic spectrum is such that mode lifetimes get shorter and spatial leaks get closer in frequency as the degree of a mode increases for a given order. A direct consequence of this property is that individual p-modes are only resolved at low and intermediate degrees, and that at high degrees, individual modes blend into ridges. Once modes have blended into ridges, the power distribution of the ridge defines the ridge central frequency and it will mask the true underlying mode frequency. An accurate model of the amplitude of the peaks that contribute to the ridge power distribution is needed to recover the underlying mode frequency from fitting the ridge. We present the results of fitting high degree power ridges (up to l = 900) computed from several two to three-month-long time-series of full-disk observations taken with the Michelson Doppler Imager (MDI) on-board the Solar and Heliospheric Observatory between 1996 and 1999. We also present a detailed discussion of the modeling of the ridge power distribution, and the contribution of the various observational and instrumental effects on the spatial leakage, in the context of the MDI instrument. We have constructed a physically motivated model (rather than some ad hoc correction scheme) resulting in a methodology that can produce an unbiased determination of high-degree modes, once the instrumental characteristics are well understood. Finally, we present changes in high degree mode parameters with epoch and thus solar activity level and discuss their significance.Comment: 59 pages, 38 figures -- High-resolution version at http://www-sgk.harvard.edu:1080/~sylvain/preprints/ -- Manuscript submitted to Ap

    La combustion des terrils

    Get PDF
    National audienceLa combustion des terrils est une spécificité des régions où du charbon est (ou a été) exploité - nous ne présenterons pas ici la combustion des stériles d'autres exploitations (schistes bitumineux...) ni de la combustion des résidus métallurgiques. Ce phénomène spectaculaire est relativement courant et suivi de près d'une part à cause des risques d'explosion qui lui sont liés et d'autre part à cause des conséquences environnementales. Du point de vue du pétrographe, des paragénèses inhabituelles de ultra-haute température à pression ambiante se développent, ainsi que des efflorescences de minéraux complexes, donnant ainsi des opportunités pour leur étude

    Keep it SMPL: Automatic Estimation of 3D Human Pose and Shape from a Single Image

    Full text link
    We describe the first method to automatically estimate the 3D pose of the human body as well as its 3D shape from a single unconstrained image. We estimate a full 3D mesh and show that 2D joints alone carry a surprising amount of information about body shape. The problem is challenging because of the complexity of the human body, articulation, occlusion, clothing, lighting, and the inherent ambiguity in inferring 3D from 2D. To solve this, we first use a recently published CNN-based method, DeepCut, to predict (bottom-up) the 2D body joint locations. We then fit (top-down) a recently published statistical body shape model, called SMPL, to the 2D joints. We do so by minimizing an objective function that penalizes the error between the projected 3D model joints and detected 2D joints. Because SMPL captures correlations in human shape across the population, we are able to robustly fit it to very little data. We further leverage the 3D model to prevent solutions that cause interpenetration. We evaluate our method, SMPLify, on the Leeds Sports, HumanEva, and Human3.6M datasets, showing superior pose accuracy with respect to the state of the art.Comment: To appear in ECCV 201
    corecore