1,310 research outputs found

    Primary production during nutrient-induced blooms at elevated CO2 concentrations

    Get PDF
    Mesocosms experiments (PeECE II and PeECE III) were carried out in 9 transparent mesocosms. Prior to the experimental period, the seawater carbonate system was manipulated to achieve three different levels of CO2. At the onset of the experimental period, nutrients were added to all mesocosms in order to initiate phytoplankton blooms. Rates of primary production were measured by in-situ incubations using 14C-incorporation and oxygen production/consumption. Particulate primary production by 14C was also size fractionated and compared with phytoplankton species composition. Nutrient supply increased the primary production rates, and a net autotrophic phase with 14C-fixation rates up to 4 times higher than initial was observed midway through the 24 days experiment before net community production returned to near-zero and 14C-fixation rates relaxed back to lower than initial. We found a trend in the 14C-based measurements towards higher cumulative primary production at higher pCO2, consistent with recently published results for DIC removal (Riebesell et al., 2007). There where found differences to the size fractionated primary production response to CO2 treatments. The plankton composition changes throughout the bloom, however, resulted in no significant response until the final phase of the experiment where phytoplankton growth became nutrient limited, and phytoplankton community changed from diatom to flagellate dominance. This opens for the two alternative hypotheses that such an effect is associated with mineral nutrient limited growth, and/or with phytoplankton species composition. The lack of a clear net heterotrophic phase in the last part of the experiment supports the idea that a substantial part of production in the upper layer was not degraded locally, but either accumulated there or was exported vertically

    Analyzing the trophic link between the mesopelagic microbial loop and zooplankton from observed depth profiles of bacteria and protozoa

    Get PDF
    It is widely recognized that organic carbon exported to the ocean aphotic layer is significantly consumed by heterotrophic organisms such as bacteria and zooplankton in the mesopelagic layer. However, very little is known for the trophic link between bacteria and zooplankton or the function of the microbial loop in this layer. In the northwestern Mediterranean, recent studies have shown that viruses, bacteria, heterotrophic nanoflagellates, and ciliates distribute down to 2000 m with group-specific depth-dependent decreases, and that bacterial production decreases with depth down to 1000 m. Here we show that such data can be analyzed using a simple steady-state food chain model to quantify the carbon flow from bacteria to zooplankton over the mesopelagic layer. The model indicates that bacterial mortality by viruses is similar to or 1.5 times greater than that by heterotrophic nanoflagellates, and that heterotrophic nanoflagellates transfer little of bacterial production to higher trophic levels

    Preface "Arctic ocean acidification: pelagic ecosystem and biogeochemical responses during a mesocosm study"

    Get PDF
    The growing evidence of potential biological impacts of ocean acidification affirms that this global change phenomenon may pose a serious threat to marine organisms and ecosystems. Whilst ocean acidification will occur everywhere, it will happen more rapidly in some regions than in others. Due to the high CO2 solubility in the cold surface waters of high-latitude seas, these areas are expected to experience the strongest changes in seawater chemistry due to ocean acidification. This will be most pronounced in the Arctic Ocean. If atmospheric pCO2 levels continue to rise at current rates, about 10% of the Arctic surface waters will be corrosive for aragonite by 2018 (Steinacher et al., 2009). By 2050 one-half of the Arctic Ocean will be sub-saturated with respect to aragonite. By the end of this century corrosive conditions are projected to have spread over the entire Arctic Ocean (Steinacher et al., 2009). In view of these rapid changes in seawater chemistry, marine organisms and ecosystems in the Arctic are considered particularly vulnerable to ocean acidification. With this in mind, the European Project on Ocean Acidification (EPOCA) chose the Arctic Ocean as one of its focal areas of research

    Explaining microbial population genomics through phage predation

    Get PDF
    The remarkable diversity of genes within the pool of prokaryotic genomes belonging to the same species or pan-genome is difficult to reconcile with the widely accepted paradigm which asserts that periodic selection within bacterial populations would regularly purge genomic diversity by clonal replacement. Recent evidence from metagenomics indicates that even within a single sample a large diversity of genomes can be present for a single species. We have found that much of the differential gene content affects regions that are potential phage recognition targets. We therefore propose the operation of Constant-Diversity dynamics in which the diversity of prokaryotic populations is preserved by phage predation. We provide supporting evidence for this model from metagenomics, mathematical analysis and computer simulations. Periodic selection and phage predation dynamics are not mutually exclusive; we compare their predictions to indicate under which ecological circumstances each dynamics could predominate

    Comparison of programs for determining temporal-spatial gait variables from instrumented walkway data: PKmas versus GAITRite

    Get PDF
    BACKGROUND: Measurement of temporal-spatial gait variables is common in aging research with several methods available. This study investigated the differences in temporal-spatial gait outcomes derived from two different programs for processing instrumented walkway data. METHOD: Data were collected with GAITRite® hardware from 86 healthy older people and 44 older people four months following surgical repair of hip fracture. Temporal-spatial variables were derived using both GAITRite® and PKmas® processing programs from the same raw footfall data. RESULTS: The mean differences between the two programs for most variables were negligible, including for Speed (mean difference 0.3 ± 0.6 cm/sec, or 0.3% of the mean GAITRite® Speed). The mean absolute percentage difference for all 18 gait variables examined ranged from 0.04% for Stride Duration to 66% for Foot Angle. The ICCs were almost perfect (≥0.99) for all variables apart from Base Width, Foot Angle, Stride Length Variability, Step Length Variability, Step Duration Variability and Step Width Variability, which were all never-the-less above 0.84. There were systematic differences for Base Width (PKmas® values 1.6 cm lower than GAITRite®) and Foot Angle (PKMAS® values 0.7° higher than GAITRite®). The differences can be explained by the differences in definitions and calculations between the programs. CONCLUSIONS: The study demonstrated that for most variables the outcomes from both programs can be used interchangeably for evaluation of gait among older people collected with GAITRite® hardware. However, validity and reliability for Base Width and Foot Angle derived by PKMAS® would benefit from further investigation

    Antiferromagnetic magnons as highly squeezed Fock states underlying quantum correlations

    Get PDF
    Employing the concept of two-mode squeezed states from quantum optics, we demonstrate a revealing physical picture for the antiferromagnetic ground state and excitations. Superimposed on a N{\'e}el ordered configuration, a spin-flip restricted to one of the sublattices is called a sublattice-magnon. We show that an antiferromagnetic spin-up magnon is comprised by a quantum superposition of states with n+1n+1 spin-up and nn spin-down sublattice-magnons, and is thus an enormous excitation despite its unit net spin. Consequently, its large sublattice-spin can amplify its coupling to other excitations. Employing von Neumann entropy as a measure, we show that the antiferromagnetic eigenmodes manifest a high degree of entanglement between the two sublattices, thereby establishing antiferromagnets as reservoirs for strong quantum correlations. Based on these novel insights, we outline strategies for exploiting the strong quantum character of antiferromagetic (squeezed-)magnons and give an intuitive explanation for recent experimental and theoretical findings in antiferromagnetic magnon spintronics

    Winter−spring transition in the subarctic Atlantic: microbial response to deep mixing and pre-bloom production

    Get PDF
    In temperate, subpolar and polar marine systems, the classical perception is that diatoms initiate the spring bloom and thereby mark the beginning of the productive season. Contrary to this view, we document an active microbial food web dominated by pico- and nanoplankton prior to the diatom bloom, a period with excess nutrients and deep convection of the water column. During repeated visits to stations in the deep Iceland and Norwegian basins and the shallow Shetland Shelf (26 March to 29 April 2012), we investigated the succession and dynamics of photosynthetic and heterotrophic microorganisms. We observed that the early phytoplankton production was followed by a decrease in the carbon:nitrogen ratio of the dissolved organic matter in the deep mixed stations, an increase in heterotrophic prokaryote (bacteria) abundance and activity (indicated by the high nucleic acid:low nucleic acid bacteria ratio), and an increase in abundance and size of heterotrophic protists. The major chl a contribution in the early winter-spring transition was found in the fraction 50 µm) were stimulated by deep mixing later in the period, while picophytoplankton were unaffected by mixing; both physical and biological reasons for this development are discussed herein

    Availability of phosphate for phytoplankton and bacteria and of labile organic carbon for bacteria at different pCO2 levels in a mesocosm study

    Get PDF
    Availability of phosphate for phytoplankton and bacteria and of glucose for bacteria at different pCO2 levels were studied in a mesocosm experiment (PeECE III). Using nutrient-depleted SW Norwegian fjord waters, three different levels of pCO2 (350 μatm: 1×CO2; 700 μatm: 2×CO2; 1050 μatm: 3×CO2) were set up, and nitrate and phosphate were added at the start of the experiment in order to induce a phytoplankton bloom. Despite similar responses of total particulate P concentration and phosphate turnover time at the three different pCO2 levels, the size distribution of particulate P and 33PO4 uptake suggested that phosphate transferred to the >10 μm fraction was greater in the 3×CO2 mesocosm during the first 6–10 days when phosphate concentration was high. During the period of phosphate depletion (after Day 12), specific phosphate affinity and specific alkaline phosphatase activity (APA) suggested a P-deficiency (i.e. suboptimal phosphate supply) rather than a P-limitation for the phytoplankton and bacterial community at the three different pCO2 levels. Specific phosphate affinity and specific APA tended to be higher in the 3×CO2 than in the 2×CO2 and 1×CO2 mesocosms during the phosphate depletion period, although no statistical differences were found. Glucose turnover time was correlated significantly and negatively with bacterial abundance and production but not with the bulk DOC concentration. This suggests that even though constituting a small fraction of the bulk DOC, glucose was an important component of labile DOC for bacteria. Specific glucose affinity of bacteria behaved similarly at the three different pCO2 levels with measured specific glucose affinities being consistently much lower than the theoretical maximum predicted from the diffusion-limited model. This suggests that bacterial growth was not severely limited by the glucose availability. Hence, it seems that the lower availability of inorganic nutrients after the phytoplankton bloom reduced the bacterial capacity to consume labile DOC in the upper mixed layer of the stratified mesocosms

    Two-Component Spin-Orbit Coupled Ultracold Atoms in the Weak and Strong Coupling Regimes

    Get PDF
    Motivated by recent experimental advances, we study two-component spin-orbit coupled ultracold bosonic atoms in two dimensions on a square optical lattice. Using a Bose-Hubbard model with spin-conserving and non-spin-conserving nearest neighbour hoppings and spin-dependent on-site density-density interaction, our goal is to characterize phase separation and spin structure in the weakly interacting and deep Mott regimes. For the weakly coupled regime, we decouple interactions through a real space uniform density mean field theory. At zero temperature, this gives an analytic condition for the phase separation transition driven by inter- relative to intracomponent interaction. Solving the self-consistent equations at finite temperature reveals entropic remixing in the phase separated regime and a more surprising entropy driven phase separation in the mixed regime. This is a consequence of complex interplay between interaction and spin-orbit coupling, and can be explained through the effect of component imbalance on the effective single-particle dispersion relation. We also provide an alternate explanation based on thermal occupation of eigenstates with a characteristic imbalance. In the strongly interacting Mott regime, we derive an effective spin Hamiltonian describing the magnetic phases of the Mott insulator. The competition between anisotropic {Heisenberg} and Dzyaloshinskii-Moriya interactions gives rise to various ferromagnetic, antiferromagnetic, spiral, stripe, vortex, and skyrmion phases. On basis of classical Monte-Carlo simulations in the literature, we reconstruct the phase diagram with a classical variational approach, while magnon excitation spectra and quantum fluctuations are calculated with Holstein-Primakoff transformation and subsequent spin wave expansion. The analysis shows that states with ferromagnetic or antiferromagnetic ordering of boson species are protected against thermal fluctuations by a gap, and well described by classical states. States with equal superposition of boson species at each lattice site are subject to relatively large quantum fluctuations, which may cause breakdown of the states within their classical parameter space regions. The dispersion relations are gapless and linear around the minima to lowest order in the spin wave expansion
    corecore