53 research outputs found
De Beaux Groupes
In this short paper, we will provide a characterisation of interpretable
groups in a beautiful pair (K, E) of algebraically closed fields : every
interpretable group is, up to isogeny, the extension of the subgroup of
E-rational points of an algebraic group by an interpretable group which is the
quotient of an algebraic group by the E-rational points of an algebraic
subgroup.---Dans une belle paire (K;E) de corps alg\'ebriquement clos, un
groupe d\'efinissable se projette, \`a isog\'enie pr\`es, sur les points
E-rationnels d'un groupe alg\'ebrique ayant pour noyau un groupe alg\'ebrique.
Un groupe interpr\'etable est, \`a isog\'enie pr\`es, l'extension des points
E-rationnels d'un groupe alg\'ebrique par un groupe interpr\'etable, qui est
lui le quotient d'un groupe alg\'ebrique par les points E-rationnels d'un
sous-groupe alg\'ebrique.Comment: in Frenc
On Variants of CM-triviality
We introduce a generalization of CM-triviality relative to a fixed invariant
collection of partial types, in analogy to the Canonical Base Property defined
by Pillay, Ziegler and Chatzidakis which generalizes one-basedness. We show
that, under this condition, a stable field is internal to the family, and a
group of finite Lascar rank has a normal nilpotent subgroup such that the
quotient is almost internal to the family
Sur les collapses de corps différentiels colorés en caractéristique nulle décrits par Poizat à l'aide des amalgames à la Hrushovski.
Nous collapsons le corps diff´erentiel rouge de Poizat en des corps diff´erentiellement clos de rang de Morley ! · 2, chacun muni d'un sous-groupe additif d´efinissable de rang !. En utilisant la d´eriv´ee logarithmique, on obtient un corps vert de rang ! · 2 avec un sous-groupe multiplicatif d´efinissable divisible contenant le corps des constantes, qui reste d´efinissable dans le r´eduit `a la structure de corps vert
Un Crit{\`E}Re Simple
In this short note, we mimic the proof of the simplicity of the theory ACFA
of generic difference fields in order to provide a criterion, valid for certain
theories of pure fields and fields equipped with operators, which shows that a
complete theory is simple whenever its definable and algebraic closures are
controlled by an underlying stable theory.Comment: in Frenc
Exotic and excited-state radiative transitions in charmonium from lattice QCD
We compute, for the first time using lattice QCD methods, radiative
transition rates involving excited charmonium states, states of high spin and
exotics. Utilizing a large basis of interpolating fields we are able to project
out various excited state contributions to three-point correlators computed on
quenched anisotropic lattices. In the first lattice QCD calculation of the
exotic 1-+ eta_c1 radiative decay, we find a large partial width Gamma(eta_c1
-> J/psi gamma) ~ 100 keV. We find clear signals for electric dipole and
magnetic quadrupole transition form factors in chi_c2 -> J/psi gamma,
calculated for the first time in this framework, and study transitions
involving excited psi and chi_c1,2 states. We calculate hindered magnetic
dipole transition widths without the sensitivity to assumptions made in model
studies and find statistically significant signals, including a non-exotic
vector hybrid candidate Y_hyb? -> eta_c gamma. As well as comparison to
experimental data, we discuss in some detail the phenomenology suggested by our
results and the extent to which it mirrors that of quark potential models and
make suggestions for the interpretation of our results involving exotic quantum
numbered states
Sous-groupes additifs de rangs dénombrables dans un corps séparablement clos
International audiencePour tout entier n, on construit des sous-groupes, infiniment définissables de rang de Lascar !n, du groupe additif d'un corps séparablement clos
Simplicity of the automorphism group of fields with operators
We adapt a proof of Lascar in order to show the simplicity of the group of
automorphisms fixing pointwise all non-generic elements for a class of
uncountable models of suitable theories of fields with operators
- …
