8,265 research outputs found

    Inhibition of oncogenic transcription factor REL by the natural product derivative calafianin monomer 101 induces proliferation arrest and apoptosis in human B-lymphoma cell lines

    Get PDF
    Increased activity of transcription factor NF-κB has been implicated in many B-cell lymphomas. We investigated effects of synthetic compound calafianin monomer (CM101) on biochemical and biological properties of NF-κB. In human 293 cells, CM101 selectively inhibited DNA binding by overexpressed NF-κB subunits REL (human c-Rel) and p65 as compared to NF-κB p50, and inhibition of REL and p65 DNA binding by CM101 required a conserved cysteine residue. CM101 also inhibited DNA binding by REL in human B-lymphoma cell lines, and the sensitivity of several B-lymphoma cell lines to CM101-induced proliferation arrest and apoptosis correlated with levels of cellular and nuclear REL. CM101 treatment induced both phosphorylation and decreased expression of anti-apoptotic protein Bcl-XL, a REL target gene product, in sensitive B-lymphoma cell lines. Ectopic expression of Bcl-XL protected SUDHL-2 B-lymphoma cells against CM101-induced apoptosis, and overexpression of a transforming mutant of REL decreased the sensitivity of BJAB B-lymphoma cells to CM101-induced apoptosis. Lipopolysaccharide-induced activation of NF-κB signaling upstream components occurred in RAW264.7 macrophages at CM101 concentrations that blocked NF-κB DNA binding. Direct inhibitors of REL may be useful for treating B-cell lymphomas in which REL is active, and may inhibit B-lymphoma cell growth at doses that do not affect some immune-related responses in normal cells.R01 GM094551 - NIGMS NIH HHS; P50 GM067041 - NIGMS NIH HHS; GM094551 - NIGMS NIH HHS; R24 GM111625 - NIGMS NIH HHS; GM067041 - NIGMS NIH HH

    Sea anemone model has a single Toll-like receptor that can function in pathogen detection, NF-κB signal transduction, and development

    Full text link
    In organisms from insects to vertebrates, Toll-like receptors (TLRs) are primary pathogen detectors that activate downstream pathways, specifically those that direct expression of innate immune effector genes. TLRs also have roles in development in many species. The sea anemone Nematostella vectensis is a useful cnidarian model to study the origins of TLR signaling because its genome encodes a single TLR and homologs of many downstream signaling components, including the NF-κB pathway. We have characterized the single N. vectensis TLR (Nv-TLR) and demonstrated that it can activate canonical NF-κB signaling in human cells. Furthermore, we show that the intracellular Toll/IL-1 receptor (TIR) domain of Nv-TLR can interact with the human TLR adapter proteins MAL and MYD88. We demonstrate that the coral pathogen Vibrio coralliilyticus causes a rapidly lethal disease in N. vectensis and that heat-inactivated V. coralliilyticus and bacterial flagellin can activate a reconstituted Nv-TLR–to–NF-κB pathway in human cells. By immunostaining of anemones, we show that Nv-TLR is expressed in a subset of cnidocytes and that many of these Nv-TLR–expressing cells also express Nv-NF-κB. Additionally, the nematosome, which is a Nematostella-specific multicellular structure, expresses Nv-TLR and many innate immune pathway homologs and can engulf V. coralliilyticus. Morpholino knockdown indicates that Nv-TLR also has an essential role during early embryonic development. Our characterization of this primitive TLR and identification of a bacterial pathogen for N. vectensis reveal ancient TLR functions and provide a model for studying the molecular basis of cnidarian disease and immunity.IOS-1354935 - National Science Foundation (NSF); GRFP - National Science Foundation (NSF); GRFP - National Science Foundation (NSF); 1262934 - National Science Foundation (NSF); 2014-BSP - Arnold and Mabel Beckman Foundatio

    CRISPR/Cas9-based editing of a sensitive transcriptional regulatory element to achieve cell type-specific knockdown of the NEMO scaffold protein

    Get PDF
    The use of alternative promoters for the cell type-specific expression of a given mRNA/protein is a common cell strategy. NEMO is a scaffold protein required for canonical NF-κB signaling. Transcription of the NEMO gene is primarily controlled by two promoters: one (promoter B) drives NEMO transcription in most cell types and the second (promoter D) is largely responsible for NEMO transcription in liver cells. Herein, we have used a CRISPR/Cas9-based approach to disrupt a core sequence element of promoter B, and this genetic editing essentially eliminates expression of NEMO mRNA and protein in 293T human kidney cells. By cell subcloning, we have isolated targeted 293T cell lines that express no detectable NEMO protein, have defined genomic alterations at promoter B, and do not support activation of canonical NF-κB signaling in response to treatment with tumor necrosis factor. Nevertheless, noncanonical NF-κB signaling is intact in these NEMO-deficient cells. Expression of ectopic wildtype NEMO, but not certain human NEMO disease mutants, in the edited cells restores downstream NF-κB signaling in response to tumor necrosis factor. Targeting of the promoter B element does not substantially reduce NEMO expression (from promoter D) in the human SNU423 liver cancer cell line. Thus, we have created a strategy for selectively eliminating cell typespecific expression from an alternative promoter and have generated 293T cell lines with a functional knockout of NEMO. The implications of these findings for further studies and for therapeutic approaches to target canonical NF-κB signaling are discussed.Published versio

    Remote participation during glycosylation reactions of galactose building blocks: Direct evidence from cryogenic vibrational spectroscopy

    Get PDF
    The stereoselective formation of 1,2‐cis‐glycosidic bonds is challenging. However, 1,2‐cis‐selectivity can be induced by remote participation of C4 or C6 ester groups. Reactions involving remote participation are believed to proceed via a key ionic intermediate, the glycosyl cation. Although mechanistic pathways were postulated many years ago, the structure of the reaction intermediates remained elusive owing to their short‐lived nature. Herein, we unravel the structure of glycosyl cations involved in remote participation reactions via cryogenic vibrational spectroscopy and first principles theory. Acetyl groups at C4 ensure α‐selective galactosylations by forming a covalent bond to the anomeric carbon in dioxolenium‐type ions. Unexpectedly, also benzyl ether protecting groups can engage in remote participation and promote the stereoselective formation of 1,2‐cis‐glycosidic bonds

    Late Decaying Dark Matter, Bulk Viscosity and the Cosmic Acceleration

    Full text link
    We discuss a cosmology in which cold dark matter begins to decay into relativistic particles at a recent epoch (z < 1). We show that the large entropy production and associated bulk viscosity from such decays leads to an accelerating cosmology as required by observations. We investigate the effects of decaying cold dark matter in a Lambda = 0, flat, initially matter dominated cosmology. We show that this model satisfies the cosmological constraint from the redshift-distance relation for type Ia supernovae. The age in such models is also consistent with the constraints from the oldest stars and globular clusters. Possible candidates for this late decaying dark matter are suggested along with additional observational tests of this cosmological paradigm.Comment: 8 pages, 3 figures, 1 tabl

    Current directions and future perspectives from the third Nematostella research conference

    Get PDF
    Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Zoology 118 (2015): 135-140, doi:10.1016/j.zool.2014.06.005.The third Nematostella vectensis Research Conference took place in December 2013 in Eilat, Israel, as a satellite to the 8th International Conference on Coelenterate Biology. The starlet sea anemone, Nematostella vectensis, has emerged as a powerful cnidarian model, in large part due to the extensive genomic and transcriptomic resources and molecular approaches that are becoming available for Nematostella, which were the focus of several presentations. In addition, research was presented highlighting the broader utility of this species for studies of development, circadian rhythms, signal transduction, and gene–environment interactions.Research in the authors’ laboratories on Nematostella is supported by National Science Foundation grants MCB-1057354 to A.M.T. and MCB-0924749 to T.D.G. Travel support for the meeting was provided to T.D.G. by Illumina, Inc. (San Diego, CA, USA), to A.M.R. by the University of North Carolina at Charlotte, and to A.M.T. by the Israel–US Binational Science Foundation (Jerusalem, Israel)

    Varied effects of algal symbionts on transcription factor NF-κB in a sea anemone and a coral: possible roles in symbiosis and thermotolerance

    Full text link
    Many cnidarians, including the reef-building corals, undergo symbiotic mutualisms with photosynthetic dinoflagellate algae of the family Symbiodiniaceae. These partnerships are sensitive to temperature extremes, which cause symbiont loss and increased coral mortality. Previous studies have implicated host immunity and specifically immunity transcription factor NF-κB as having a role in the maintenance of the cnidarian-algal symbiosis. Here we have further investigated a possible role for NF-κB in establishment and loss of symbiosis in various strains of the anemone Exaiptasia (Aiptasia) and in the coral Pocillopora damicornis. Our results show that NF-κB expression is reduced in Aiptasia larvae and adults that host certain algae strains. Treatment of Aiptasia larvae with a known symbiosis-promoting cytokine, transforming growth factor β, also led to decreased NF-κB expression. We also show that aposymbiotic Aiptasia (with high NF-κB expression) have increased survival following infection with the pathogenic bacterium Serratia marcescens as compared to symbiotic Aiptasia (low NF-κB expression). Furthermore, a P. damicornis coral colony hosting Durusdinium spp. (formerly clade D) symbionts had higher basal NF-κB expression and decreased heat-induced bleaching as compared to two individuals hosting Cladocopium spp. (formerly clade C) symbionts. Lastly, genome-wide gene expression profiling and genomic promoter analysis identified putative NF-κB target genes that may be involved in thermal bleaching, symbiont maintenance, and/or immune protection in P. damicornis. Our results provide further support for the hypothesis that modulation of NF-κB and immunity plays a role in some, but perhaps not all, cnidarian-Symbiodiniaceae partnerships as well as in resistance to pathogens and bleaching.Accepted manuscrip

    Synchronous Evolution of Galaxies in Groups: NGC 524 Group

    Full text link
    By means of panoramic spectroscopy at the SAO RAS BTA telescope, we investigated the properties of stellar populations in the central regions of five early-type galaxies -- the NGC 524 group members. The evolution of the central regions of galaxies looks synchronized: the average age of stars in the bulges of all the five galaxies lies in the range of 3--6 Gyr. Four of the five galaxies revealed synchronized bursts of star formation in the nuclei 1--2 Gyr ago. The only galaxy, in which the ages of stellar population in the nucleus and in the bulge coincide (i.e. the nuclear burst of star formation did not take place) is NGC 502, the farthest from the center of the group of all the galaxies studied.Comment: Slightly edited version of the paper to appear in the Astrophysical Bulletin, 67(3); 24 pages including 8 figure

    A close look at the Centaurus A group of galaxies: I. Metallicity distribution functions and population gradients in early-type dwarfs

    Get PDF
    We study dwarf galaxies in the Centaurus A group to investigate their metallicity and possible environmental effects. The Centaurus A group (at ~4 Mpc from the Milky Way) contains about 50 known dwarf companions of different morphologies and stellar contents, thus making it a very interesting target to study how these galaxies evolve. Here we present results for the early-type dwarf galaxy population in this group. We use archival HST/ACS data to study the resolved stellar content of 6 galaxies, together with isochrones from the Dartmouth stellar evolutionary models. We derive photometric metallicity distribution functions of stars on the upper red giant branch via isochrone interpolation. The 6 galaxies are moderately metal-poor (=-1.56 to -1.08), and metallicity spreads are observed (internal dispersions of sigma_[Fe/H]=0.10 to 0.41 dex). We also investigate the possible presence of intermediate-age stars, and discuss how these affect our results. The dwarfs exhibit flat to weak radial metallicity gradients. For the two most luminous, most metal-rich galaxies, we find statistically significant evidence for at least two stellar subpopulations: the more metal-rich stars are found in the center of the galaxies, while the metal-poor ones are more broadly distributed within the galaxies. We find no clear trend of the derived physical properties as a function of (present-day) galaxy position in the group, which may be due to the small sample we investigate. We compare our results to the early-type dwarf population of the Local Group, and find no outstanding differences, despite the fact that the Centaurus A group is a denser environment that is possibly in a more advanced dynamical stage.Comment: 21 pages, 12 figures, accepted for publication in Astronomy and Astrophysic
    corecore