5,554 research outputs found

    Hemodynamically informed parcellation of cerebral FMRI data

    Get PDF
    Standard detection of evoked brain activity in functional MRI (fMRI) relies on a fixed and known shape of the impulse response of the neurovascular coupling, namely the hemodynamic response function (HRF). To cope with this issue, the joint detection-estimation (JDE) framework has been proposed. This formalism enables to estimate a HRF per region but for doing so, it assumes a prior brain partition (or parcellation) regarding hemodynamic territories. This partition has to be accurate enough to recover accurate HRF shapes but has also to overcome the detection-estimation issue: the lack of hemodynamics information in the non-active positions. An hemodynamically-based parcellation method is proposed, consisting first of a feature extraction step, followed by a Gaussian Mixture-based parcellation, which considers the injection of the activation levels in the parcellation process, in order to overcome the detection-estimation issue and find the underlying hemodynamics

    Fast joint detection-estimation of evoked brain activity in event-related fMRI using a variational approach

    Get PDF
    In standard clinical within-subject analyses of event-related fMRI data, two steps are usually performed separately: detection of brain activity and estimation of the hemodynamic response. Because these two steps are inherently linked, we adopt the so-called region-based Joint Detection-Estimation (JDE) framework that addresses this joint issue using a multivariate inference for detection and estimation. JDE is built by making use of a regional bilinear generative model of the BOLD response and constraining the parameter estimation by physiological priors using temporal and spatial information in a Markovian modeling. In contrast to previous works that use Markov Chain Monte Carlo (MCMC) techniques to approximate the resulting intractable posterior distribution, we recast the JDE into a missing data framework and derive a Variational Expectation-Maximization (VEM) algorithm for its inference. A variational approximation is used to approximate the Markovian model in the unsupervised spatially adaptive JDE inference, which allows fine automatic tuning of spatial regularisation parameters. It follows a new algorithm that exhibits interesting properties compared to the previously used MCMC-based approach. Experiments on artificial and real data show that VEM-JDE is robust to model mis-specification and provides computational gain while maintaining good performance in terms of activation detection and hemodynamic shape recovery

    Implementing Quantum Walks Using Orbital Angular Momentum of Classical Light

    Full text link
    We present an implementation scheme for a quantum walk in the orbital angular momentum space of a laser beam. The scheme makes use of a ring interferometer, containing a quarter-wave plate and a q plate. This setup enables one to perform an arbitrary number of quantum walk steps. In addition, the classical nature of the implementation scheme makes it possible to observe the quantum walk evolution in real time. We use nonquantum entanglement of the laser beam's polarization with its orbital angular momentum to implement the quantum walk

    TempoCave: Visualizing Dynamic Connectome Datasets to Support Cognitive Behavioral Therapy

    Get PDF
    We introduce TempoCave, a novel visualization application for analyzing dynamic brain networks, or connectomes. TempoCave provides a range of functionality to explore metrics related to the activity patterns and modular affiliations of different regions in the brain. These patterns are calculated by processing raw data retrieved functional magnetic resonance imaging (fMRI) scans, which creates a network of weighted edges between each brain region, where the weight indicates how likely these regions are to activate synchronously. In particular, we support the analysis needs of clinical psychologists, who examine these modular affiliations and weighted edges and their temporal dynamics, utilizing them to understand relationships between neurological disorders and brain activity, which could have a significant impact on the way in which patients are diagnosed and treated. We summarize the core functionality of TempoCave, which supports a range of comparative tasks, and runs both in a desktop mode and in an immersive mode. Furthermore, we present a real-world use case that analyzes pre- and post-treatment connectome datasets from 27 subjects in a clinical study investigating the use of cognitive behavior therapy to treat major depression disorder, indicating that TempoCave can provide new insight into the dynamic behavior of the human brain

    Spatial mode detection by frequency upconversion

    Get PDF
    The efficient creation and detection of spatial modes of light has become topical of late, driven by the need to increase photon-bit-rates in classical and quantum communications. Such mode creation/detection is traditionally achieved with tools based on linear optics. Here we put forward a new spatial mode detection technique based on the nonlinear optical process of sum-frequency generation. We outline the concept theoretically and demonstrate it experimentally with intense laser beams carrying orbital angular momentum and Hermite-Gaussian modes. Finally, we show that the method can be used to transfer an image from the infrared band to the visible, which implies the efficient conversion of many spatial modes.Comment: Published version, 4 pages, 5 figure
    corecore