5,554 research outputs found
Hemodynamically informed parcellation of cerebral FMRI data
Standard detection of evoked brain activity in functional MRI (fMRI) relies
on a fixed and known shape of the impulse response of the neurovascular
coupling, namely the hemodynamic response function (HRF). To cope with this
issue, the joint detection-estimation (JDE) framework has been proposed. This
formalism enables to estimate a HRF per region but for doing so, it assumes a
prior brain partition (or parcellation) regarding hemodynamic territories. This
partition has to be accurate enough to recover accurate HRF shapes but has also
to overcome the detection-estimation issue: the lack of hemodynamics
information in the non-active positions. An hemodynamically-based parcellation
method is proposed, consisting first of a feature extraction step, followed by
a Gaussian Mixture-based parcellation, which considers the injection of the
activation levels in the parcellation process, in order to overcome the
detection-estimation issue and find the underlying hemodynamics
Fast joint detection-estimation of evoked brain activity in event-related fMRI using a variational approach
In standard clinical within-subject analyses of event-related fMRI data, two
steps are usually performed separately: detection of brain activity and
estimation of the hemodynamic response. Because these two steps are inherently
linked, we adopt the so-called region-based Joint Detection-Estimation (JDE)
framework that addresses this joint issue using a multivariate inference for
detection and estimation. JDE is built by making use of a regional bilinear
generative model of the BOLD response and constraining the parameter estimation
by physiological priors using temporal and spatial information in a Markovian
modeling. In contrast to previous works that use Markov Chain Monte Carlo
(MCMC) techniques to approximate the resulting intractable posterior
distribution, we recast the JDE into a missing data framework and derive a
Variational Expectation-Maximization (VEM) algorithm for its inference. A
variational approximation is used to approximate the Markovian model in the
unsupervised spatially adaptive JDE inference, which allows fine automatic
tuning of spatial regularisation parameters. It follows a new algorithm that
exhibits interesting properties compared to the previously used MCMC-based
approach. Experiments on artificial and real data show that VEM-JDE is robust
to model mis-specification and provides computational gain while maintaining
good performance in terms of activation detection and hemodynamic shape
recovery
Implementing Quantum Walks Using Orbital Angular Momentum of Classical Light
We present an implementation scheme for a quantum walk in the orbital angular
momentum space of a laser beam. The scheme makes use of a ring interferometer,
containing a quarter-wave plate and a q plate. This setup enables one to
perform an arbitrary number of quantum walk steps. In addition, the classical
nature of the implementation scheme makes it possible to observe the quantum
walk evolution in real time. We use nonquantum entanglement of the laser beam's
polarization with its orbital angular momentum to implement the quantum walk
TempoCave: Visualizing Dynamic Connectome Datasets to Support Cognitive Behavioral Therapy
We introduce TempoCave, a novel visualization application for analyzing
dynamic brain networks, or connectomes. TempoCave provides a range of
functionality to explore metrics related to the activity patterns and modular
affiliations of different regions in the brain. These patterns are calculated
by processing raw data retrieved functional magnetic resonance imaging (fMRI)
scans, which creates a network of weighted edges between each brain region,
where the weight indicates how likely these regions are to activate
synchronously. In particular, we support the analysis needs of clinical
psychologists, who examine these modular affiliations and weighted edges and
their temporal dynamics, utilizing them to understand relationships between
neurological disorders and brain activity, which could have a significant
impact on the way in which patients are diagnosed and treated. We summarize the
core functionality of TempoCave, which supports a range of comparative tasks,
and runs both in a desktop mode and in an immersive mode. Furthermore, we
present a real-world use case that analyzes pre- and post-treatment connectome
datasets from 27 subjects in a clinical study investigating the use of
cognitive behavior therapy to treat major depression disorder, indicating that
TempoCave can provide new insight into the dynamic behavior of the human brain
Spatial mode detection by frequency upconversion
The efficient creation and detection of spatial modes of light has become
topical of late, driven by the need to increase photon-bit-rates in classical
and quantum communications. Such mode creation/detection is traditionally
achieved with tools based on linear optics. Here we put forward a new spatial
mode detection technique based on the nonlinear optical process of
sum-frequency generation. We outline the concept theoretically and demonstrate
it experimentally with intense laser beams carrying orbital angular momentum
and Hermite-Gaussian modes. Finally, we show that the method can be used to
transfer an image from the infrared band to the visible, which implies the
efficient conversion of many spatial modes.Comment: Published version, 4 pages, 5 figure
- …
