966 research outputs found
DNA-coated Functional Oil Droplets
Many industrial soft materials often include oil-in-water (O/W) emulsions at
the core of their formulations. By using tuneable interface stabilizing agents,
such emulsions can self-assemble into complex structures. DNA has been used for
decades as a thermoresponsive highly specific binding agent between hard and,
recently, soft colloids. Up until now, emulsion droplets functionalized with
DNA had relatively low coating densities and were expensive to scale up. Here a
general O/W DNA-coating method using functional non-ionic amphiphilic block
copolymers, both diblock and triblock, is presented. The hydrophilic
polyethylene glycol ends of the surfactants are functionalized with azides,
allowing for efficient, dense and controlled coupling of dibenzocyclooctane
functionalized DNA to the polymers through a strain-promoted alkyne-azide click
reaction. The protocol is readily scalable due to the triblock's commercial
availability. Different production methods (ultrasonication, microfluidics and
membrane emulsification) are used with different oils (hexadecane and silicone
oil) to produce functional droplets in various size ranges (sub-micron, and ), showcasing the generality of
the protocol. Thermoreversible sub-micron emulsion gels, hierarchical
"raspberry" droplets and controlled droplet release from a flat DNA-coated
surface are demonstrated. The emulsion stability and polydispersity is
evaluated using dynamic light scattering and optical microscopy. The generality
and simplicity of the method opens up new applications in soft matter and
biotechnological research and industrial advances.Comment: 7 pages, 2 figures, 1 tabl
Solvable two-dimensional time-dependent non-Hermitian quantum systems with infinite dimensional Hilbert space in the broken PT-regime
We provide exact analytical solutions for a two-dimensional explicitly time-dependent non-Hermitian quantum system. While the time-independent variant of the model studied is in the broken PT-symmetric phase for the entire range of the model parameters, and has therefore a partially complex energy eigenspectrum, its time-dependent version has real energy expectation values at all times. In our solution procedure we compare the two equivalent approaches of directly solving the time-dependent Dyson equation with one employing the Lewis–Riesenfeld method of invariants. We conclude that the latter approach simplifies the solution procedure due to the fact that the invariants of the non-Hermitian and Hermitian system are related to each other in a pseudo-Hermitian fashion, which in turn does not hold for their corresponding time-dependent Hamiltonians. Thus constructing invariants and subsequently using the pseudo-Hermiticity relation between them allows to compute the Dyson map and to solve the Dyson equation indirectly. In this way one can bypass to solve nonlinear differential equations, such as the dissipative Ermakov–Pinney equation emerging in our and many other systems
Unconvincing statistical and functional inferences : reply to Catmur
A commentary on Unconvincing support for role of mirror neurons in “action understanding”: com-mentary on Michael et al. (2014) by Catmur, C. (2014). Front. Hum
Exploring face perception in disorders of development: evidence from Williams syndrome and autism
Individuals with Williams syndrome (WS) and autism are characterized by different social phenotypes but have been said to show similar atypicalities of face-processing style. Although the structural encoding of faces may be similarly atypical in these two developmental disorders, there are clear differences in overall face skills. The inclusion of both populations in the same study can address how the profile of face skills varies across disorders. The current paper explored the processing of identity, eye-gaze, lip-reading, and expressions of emotion using the same participants across face domains. The tasks had previously been used to make claims of a modular structure to face perception in typical development. Participants with WS (N=15) and autism (N=20) could be dissociated from each other, and from individuals with general developmental delay, in the domains of eye-gaze and expression processing. Individuals with WS were stronger at these skills than individuals with autism. Even if the structural encoding of faces appears similarly atypical in these groups, the overall profile of face skills, as well as the underlying architecture of face perception, varies greatly. The research provides insights into typical and atypical models of face perception in WS and autism
Perceptual grouping abilities in individuals with Autism Spectrum Disorder: exploring patterns of ability in relation to grouping type and levels of development
This study further investigates findings of impairment in Gestalt, but not global processing in Autism Spectrum Disorder (ASD) [Brosnan, Scott, Fox, & Pye, 2004]. Nineteen males with ASD and nineteen typically developing (TD) males matched by nonverbal ability, took part in five Gestalt perceptual grouping tasks. Results showed that performance differed according to grouping type. The ASD group showed typical performance for grouping by proximity and by alignment, impairment on low difficulty trials for orientation and luminance similarity, and general impairment for grouping by shape similarity. Group differences were also observed developmentally; for the ASD group, with the exception of grouping by shape similarity, perceptual grouping performance was poorer at lower than higher levels of nonverbal ability. In contrast, no developmental progression was observed in the TD controls
Recommended from our members
Dyslexia and substance use in a University Undergraduate Population
Background: A number of cognitive deficits are associated with dyslexia. However, only a limited amount of research has been performed exploring a putative link between dyslexia and substance use. As substance use is thought to involve a cognitive component, it is possible that the pattern of substance use would be different for dyslexic participants, when compared to nondyslexic controls. During the current study, a guiding hypothesis was that people with dyslexia would demonstrate less substance use than nondyslexic controls. Theories of memory activation, automaticity, and attentional bias in substance use suggest that cognitive components of substance use are important in the development and maintenance of continued substance use and it is thought that, at least some of these components, would be impaired in a dyslexic population.
Objectives: If the cognitive deficits displayed by dyslexics somehow impair the development of cognitive components of substance use, substance use for dyslexic participants may be less pronounced. This paper therefore examines this hypothesis by comparing substance use within dyslexic and nondyslexic participants, from an undergraduate population.
Methods: This was an exploratory questionnaire-based study. Dyslexic participants (n = 35) were compared to control participants (n = 62) on a series of questions designed to measure their substance use history.
Results: The results provided preliminary evidence of a difference between dyslexic and nondyslexic substance use. Dyslexics reported a substance use history that was significantly lower than nondyslexic controls.
Conclusions/Importance: These results are interpreted in terms of cognitive deficits within dyslexia and with reference to the cognitive model of substance use
A structure in the early Universe at z 1.3 that exceeds the homogeneity scale of the R-W concordance cosmology
A Large Quasar Group (LQG) of particularly large size and high membership has been identified in the DR7QSO catalogue of the Sloan Digital Sky Survey. It has characteristic size (volume^1/3) ~ 500 Mpc (proper size, present epoch), longest dimension ~ 1240 Mpc, membership of 73 quasars, and mean redshift = 1.27. In terms of both size and membership it is the most extreme LQG found in the DR7QSO catalogue for the redshift range 1.0 = 1.28, which is itself one of the more extreme examples. Their boundaries approach to within ~ 2 deg (~ 140 Mpc projected). This new, huge LQG appears to be the largest structure currently known in the early universe. Its size suggests incompatibility with the Yadav et al. scale of homogeneity for the concordance cosmology, and thus challenges the assumption of the cosmological principle
Two Rare Magnetic Cataclysmic Variables with Extreme Cyclotron Features Identified in the Sloan Digital Sky Survey
Two newly identified magnetic cataclysmic variables discovered in the Sloan
Digital Sky Survey (SDSS), SDSSJ155331.12+551614.5 and SDSSJ132411.57+032050.5,
have spectra showing highly prominent, narrow, strongly polarized cyclotron
humps with amplitudes that vary on orbital periods of 4.39 and 2.6 hrs,
respectively. In the former, the spacing of the humps indicates the 3rd and 4th
harmonics in a magnetic field of ~60 MG. The narrowness of the cyclotron
features and the lack of strong emission lines imply very low temperature
plasmas and very low accretion rates, so that the accreting area is heated by
particle collisions rather than accretion shocks. The detection of rare systems
like these exemplifies the ability of the SDSS to find the lowest accretion
rate close binaries.Comment: Accepted for publication in the Astrophysical Journal, vol. 583,
February 1, 2003; slight revisions and additions in response to referee's
comments; 17 pages, 6 figures, AASTeX v4.
- …
