1,714 research outputs found

    A Density Independent Formulation of Smoothed Particle Hydrodynamics

    Full text link
    The standard formulation of the smoothed particle hydrodynamics (SPH) assumes that the local density distribution is differentiable. This assumption is used to derive the spatial derivatives of other quantities. However, this assumption breaks down at the contact discontinuity. At the contact discontinuity, the density of the low-density side is overestimated while that of the high-density side is underestimated. As a result, the pressure of the low (high) density side is over (under) estimated. Thus, unphysical repulsive force appears at the contact discontinuity, resulting in the effective surface tension. This tension suppresses fluid instabilities. In this paper, we present a new formulation of SPH, which does not require the differentiability of density. Instead of the mass density, we adopt the internal energy density (pressure), and its arbitrary function, which are smoothed quantities at the contact discontinuity, as the volume element used for the kernel integration. We call this new formulation density independent SPH (DISPH). It handles the contact discontinuity without numerical problems. The results of standard tests such as the shock tube, Kelvin-Helmholtz and Rayleigh-Taylor instabilities, point like explosion, and blob tests are all very favorable to DISPH. We conclude that DISPH solved most of known difficulties of the standard SPH, without introducing additional numerical diffusion or breaking the exact force symmetry or energy conservation. Our new SPH includes the formulation proposed by Ritchie & Thomas (2001) as a special case. Our formulation can be extended to handle a non-ideal gas easily.Comment: 24 pages, 21 figures. Movies and high resolution figures are available at http://v1.jmlab.jp/~saitoh/sph/index.htm

    Improving convergence in smoothed particle hydrodynamics simulations without pairing instability

    Full text link
    The numerical convergence of smoothed particle hydrodynamics (SPH) can be severely restricted by random force errors induced by particle disorder, especially in shear flows, which are ubiquitous in astrophysics. The increase in the number NH of neighbours when switching to more extended smoothing kernels at fixed resolution (using an appropriate definition for the SPH resolution scale) is insufficient to combat these errors. Consequently, trading resolution for better convergence is necessary, but for traditional smoothing kernels this option is limited by the pairing (or clumping) instability. Therefore, we investigate the suitability of the Wendland functions as smoothing kernels and compare them with the traditional B-splines. Linear stability analysis in three dimensions and test simulations demonstrate that the Wendland kernels avoid the pairing instability for all NH, despite having vanishing derivative at the origin (disproving traditional ideas about the origin of this instability; instead, we uncover a relation with the kernel Fourier transform and give an explanation in terms of the SPH density estimator). The Wendland kernels are computationally more convenient than the higher-order B-splines, allowing large NH and hence better numerical convergence (note that computational costs rise sub-linear with NH). Our analysis also shows that at low NH the quartic spline kernel with NH ~= 60 obtains much better convergence then the standard cubic spline.Comment: substantially revised version, accepted for publication in MNRAS, 15 pages, 13 figure

    EvoL: The new Padova T-SPH parallel code for cosmological simulations - I. Basic code: gravity and hydrodynamics

    Full text link
    We present EvoL, the new release of the Padova N-body code for cosmological simulations of galaxy formation and evolution. In this paper, the basic Tree + SPH code is presented and analysed, together with an overview on the software architectures. EvoL is a flexible parallel Fortran95 code, specifically designed for simulations of cosmological structure formation on cluster, galactic and sub-galactic scales. EvoL is a fully Lagrangian self-adaptive code, based on the classical Oct-tree and on the Smoothed Particle Hydrodynamics algorithm. It includes special features such as adaptive softening lengths with correcting extra-terms, and modern formulations of SPH and artificial viscosity. It is designed to be run in parallel on multiple CPUs to optimize the performance and save computational time. We describe the code in detail, and present the results of a number of standard hydrodynamical tests.Comment: 33 pages, 49 figures, accepted on A&

    Smoothed Particle Magnetohydrodynamics III. Multidimensional tests and the div B = 0 constraint

    Full text link
    In two previous papers (Price & Monaghan 2004a,b) (papers I,II) we have described an algorithm for solving the equations of Magnetohydrodynamics (MHD) using the Smoothed Particle Hydrodynamics (SPH) method. The algorithm uses dissipative terms in order to capture shocks and has been tested on a wide range of one dimensional problems in both adiabatic and isothermal MHD. In this paper we investigate multidimensional aspects of the algorithm, refining many of the aspects considered in papers I and II and paying particular attention to the code's ability to maintain the div B = 0 constraint associated with the magnetic field. In particular we implement a hyperbolic divergence cleaning method recently proposed by Dedner et al. (2002) in combination with the consistent formulation of the MHD equations in the presence of non-zero magnetic divergence derived in papers I and II. Various projection methods for maintaining the divergence-free condition are also examined. Finally the algorithm is tested against a wide range of multidimensional problems used to test recent grid-based MHD codes. A particular finding of these tests is that in SPMHD the magnitude of the divergence error is dependent on the number of neighbours used to calculate a particle's properties and only weakly dependent on the total number of particles. Whilst many improvements could still be made to the algorithm, our results suggest that the method is ripe for application to problems of current theoretical interest, such as that of star formation.Comment: Here is the latest offering in my quest for a decent SPMHD algorithm. 26 pages, 15 figures, accepted for publication in MNRAS. Version with high res figures available from http://www.astro.ex.ac.uk/people/dprice/pubs/spmhd/spmhdpaper3.pd

    Smoothed Particle Hydrodynamics and Magnetohydrodynamics

    Full text link
    This paper presents an overview and introduction to Smoothed Particle Hydrodynamics and Magnetohydrodynamics in theory and in practice. Firstly, we give a basic grounding in the fundamentals of SPH, showing how the equations of motion and energy can be self-consistently derived from the density estimate. We then show how to interpret these equations using the basic SPH interpolation formulae and highlight the subtle difference in approach between SPH and other particle methods. In doing so, we also critique several `urban myths' regarding SPH, in particular the idea that one can simply increase the `neighbour number' more slowly than the total number of particles in order to obtain convergence. We also discuss the origin of numerical instabilities such as the pairing and tensile instabilities. Finally, we give practical advice on how to resolve three of the main issues with SPMHD: removing the tensile instability, formulating dissipative terms for MHD shocks and enforcing the divergence constraint on the particles, and we give the current status of developments in this area. Accompanying the paper is the first public release of the NDSPMHD SPH code, a 1, 2 and 3 dimensional code designed as a testbed for SPH/SPMHD algorithms that can be used to test many of the ideas and used to run all of the numerical examples contained in the paper.Comment: 44 pages, 14 figures, accepted to special edition of J. Comp. Phys. on "Computational Plasma Physics". The ndspmhd code is available for download from http://users.monash.edu.au/~dprice/ndspmhd

    Circadian patterns in postvoid residual and voided percentage among older women with urinary incontinence

    Get PDF
    Background: Women with urinary incontinence incur an increased risk of elevated postvoid residual (PVR) volume and impaired voiding efficiency (i.e., voided percentage (Void%)), but the clinical significance of these parameters remains poorly described. Further characterization of PVR and voiding efficiency may thus be useful in refining the evaluation and management of urinary incontinence. This study aims to explore possible circadian variations in PVR and Void% in older women with stress (SUI), urge (UUI) and mixed urinary incontinence (MUI). Methods: A single center prospective study which enrolled a convenience sample of 90 older women who consulted a tertiary referral hospital for urinary incontinence. Participants underwent an extensive medical interview and were hospitalized to complete a 24-h frequency-volume chart (FVC) with PVR measurement after each void (FVCPVR). Results: FVCPVR analysis demonstrated no differences in mean PVR and Void% between patients with SUI, UUI and MUI. Likewise, no daytime or nighttime differences were observed in mean PVR or Void% within or between groups. Conclusions: No evidence of circadian variation in PVR or Void% was observed in older women with SUI, UUI or MUI

    START: Smoothed particle hydrodynamics with tree-based accelerated radiative transfer

    Get PDF
    We present a novel radiation hydrodynamics code, START, which is a smoothed particle hydrodynamics (SPH) scheme coupled with accelerated radiative transfer. The basic idea for the acceleration of radiative transfer is parallel to the tree algorithm that is hitherto used to speed up the gravitational force calculation in an N-body system. It is demonstrated that the radiative transfer calculations can be dramatically accelerated, where the computational time is scaled as Np log Ns for Np SPH particles and Ns radiation sources. Such acceleration allows us to readily include not only numerous sources but also scattering photons, even if the total number of radiation sources is comparable to that of SPH particles. Here, a test simulation is presented for a multiple source problem, where the results with START are compared to those with a radiation SPH code without tree-based acceleration. We find that the results agree well with each other if we set the tolerance parameter as < 1.0, and then it demonstrates that START can solve radiative transfer faster without reducing the accuracy. One of important applications with START is to solve the transfer of diffuse ionizing photons, where each SPH particle is regarded as an emitter. To illustrate the competence of START, we simulate the shadowing effect by dense clumps around an ionizing source. As a result, it is found that the erosion of shadows by diffuse recombination photons can be solved. Such an effect is of great significance to reveal the cosmic reionization process.Comment: 14 pages, 23 figures, accepted for publication in MNRA

    Introduction to forest valuation and investment analysis

    Get PDF
    Most foresters and forest landowners are aware that money has a time value. A dollar today is worth more than a dollar tomorrow. If you borrow 1,000fromthebanktoday,youwouldhavetopaybackmorethan1,000 from the bank today, you would have to pay back more than 1,000 in 90 days. The term forest economists use for this concept is the t :!me value of money: the closer to today you receive a sum of money, the greater its present value

    Kelvin-Helmholtz instabilities in Smoothed Particle Hydrodynamics

    Full text link
    In this paper we investigate whether Smoothed Particle Hydrodynamics (SPH), equipped with artificial conductivity, is able to capture the physics of density/energy discontinuities in the case of the so-called shearing layers test, a test for examining Kelvin-Helmholtz (KH) instabilities. We can trace back each failure of SPH to show KH rolls to two causes: i) shock waves travelling in the simulation box and ii) particle clumping, or more generally, particle noise. The probable cause of shock waves is the Local Mixing Instability (LMI), previously identified in the literature. Particle noise on the other hand is a problem because it introduces a large error in the SPH momentum equation. We also investigate the role of artificial conductivity (AC). Including AC is necessary for the long-term behavior of the simulation (e.g. to get λ=1/2,1\lambda=1/2, 1 KH rolls). In sensitive hydrodynamical simulations great care is however needed in selecting the AC signal velocity, with the default formulation leading to too much energy diffusion. We present new signal velocities that lead to less diffusion. The effects of the shock waves and of particle disorder become less important as the time-scale of the physical problem (for the shearing layers problem: lower density contrast and higher Mach numbers) decreases. At the resolution of current galaxy formation simulations mixing is probably not important. However, mixing could become crucial for next-generation simulations.Comment: 16 pages, 23 figures, accepted for publication in MNRA
    corecore