80 research outputs found

    Plasmodium falciparum ligand binding to erythrocytes induce alterations in deformability essential for invasion

    Get PDF
    The most lethal form of malaria in humans is caused by Plasmodium falciparum. These parasites invade erythrocytes, a complex process involving multiple ligand-receptor interactions. The parasite makes initial contact with the erythrocyte followed by dramatic deformations linked to the function of the Erythrocyte binding antigen family and P. falciparum reticulocyte binding-like families. We show EBA-175 mediates substantial changes in the deformability of erythrocytes by binding to glycophorin A and activating a phosphorylation cascade that includes erythrocyte cytoskeletal proteins resulting in changes in the viscoelastic properties of the host cell. TRPM7 kinase inhibitors FTY720 and waixenicin A block the changes in the deformability of erythrocytes and inhibit merozoite invasion by directly inhibiting the phosphorylation cascade. Therefore, binding of P. falciparum parasites to the erythrocyte directly activate a signaling pathway through a phosphorylation cascade and this alters the viscoelastic properties of the host membrane conditioning it for successful invasion

    Export of malaria proteins requires co-translational processing of the PEXEL motif independent of phosphatidylinositol-3-phosphate binding

    Get PDF
    Acknowledgements We thank the Red Cross blood bank in Melbourne for human erythrocytes. We thank Svenja Gunther for expression of GBP130 66–196 proteins; Michelle Gazdik and Chris Burns for help in preparing lipids; Lachlan Whitehead (Centre for Dynamic Imaging, Walter and Eliza Hall Institute) for assistance with quantification of export; and David Bocher for help with generation of STEVOR constructs. This work was supported by the National Health and Medical Research Council of Australia (grants 637406, 1010326, 1049811 and 1057960), a Ramaciotti Foundation Establishment Grant (3197/2010), a Victorian State Government Operational Infrastructure Support and Australian Government NHMRC IRIISS, and the Canadian Institutes for Health Research (MOP#130359). J.A.B is an Australian Research Council QEII Fellow, SF was supported by the Research Training Group GRK1459 of the German Research Foundation, and AFC is a Howard Hughes International Scholar.Peer reviewedPublisher PD

    Archvillin, a muscle-specific isoform of supervillin, is an early expressed component of the costameric membrane skeleton

    Get PDF
    The membrane skeleton protein supervillin binds tightly to both F-actin and membranes and can potentiate androgen receptor activity in non-muscle cells. We report that muscle, which constitutes the principal tissue source for supervillin sequences, contains a approximately 250 kDa isoform of supervillin that localizes within nuclei and with dystrophin at costameres, regions of F-actin membrane attachment in skeletal muscle. The gene encoding this protein, \u27archvillin\u27 (Latin, archi; Greek, archos; \u27principal\u27 or \u27chief\u27), contains an evolutionarily conserved, muscle-specific 5\u27 leader sequence. Archvillin cDNAs also contain four exons that encode approximately 47 kDa of additional muscle-specific protein sequence in the form of two inserts within the function-rich N-terminus of supervillin. The first of these muscle-specific inserts contains two conserved nuclear targeting signals in addition to those found in sequences shared with supervillin. Archvillin, like supervillin, binds directly to radiolabeled F-actin and co-fractionates with plasma membranes. Colocalization of archvillin with membrane-associated actin filaments, non-muscle myosin II, and--to a lesser extent--vinculin was observed in myoblasts. Striking localizations of archvillin protein and mRNA were observed at the tips of differentiating myotubes. Transfected protein chimeras containing archvillin insert sequences inhibited myotube formation, consistent with a dominant-negative effect during early myogenesis. These data suggest that archvillin is among the first costameric proteins to assemble during myogenesis and that it contributes to myogenic membrane structure and differentiation

    12-week combined strength and endurance exercise attenuates CD8+ T-cell differentiation and affects the kynurenine pathway in the elderly: a randomized controlled trial

    Get PDF
    Background: Age-related accumulation of highly differentiated CD8+ effector memory re-expressing CD45RA (EMRA) T-cells and disruption of the kynurenine (KYN) pathway are associated with chronic inflammation and the development of insulin resistance. In this study the aim was to investigate the effects of 12-week combined strength and endurance exercise on CD8+ T-cell differentiation and KYN pathway metabolites. Ninety-six elderly subjects (f/m, aged 50—70) were randomized to a control (CON) or exercise (EX) group. The EX group completed combined strength and endurance training twice weekly for one hour each time at an intensity of 60% of the one-repetition maximum for strength exercises and a perceived exertion of 15/20 for endurance exercises. The EX group was also randomly subdivided into two groups with or without a concomitant balanced diet intervention in order to examine additional effects besides exercise alone. Before and after the intervention phase, the proportions of CD8+ T-cell subsets and levels of KYN pathway metabolites in peripheral blood were determined. Results: The CD8+ EMRA T-cell subsets increased in the CON group but remained almost unchanged in the EX group (p =.02). Plasma levels of kynurenic acid (KA) increased in the EX group and decreased in the CON group (p =.03). Concomitant nutritional intervention resulted in lower levels of quinolinic acid (QA) compared with exercise alone (p =.03). Overall, there was a slight increase in the QA/KA ratio in the CON group, whereas it decreased in the EX group (p >.05). Conclusions: Combined strength and endurance training seems to be a suitable approach to attenuate CD8+ T-cell differentiation in the elderly and to redirect the KYN pathway towards KA. The clinical relevance of these effects needs further investigation

    Supervillin modulation of focal adhesions involving TRIP6/ZRP-1

    Get PDF
    Cell–substrate contacts, called focal adhesions (FAs), are dynamic in rapidly moving cells. We show that supervillin (SV)—a peripheral membrane protein that binds myosin II and F-actin in such cells—negatively regulates stress fibers, FAs, and cell–substrate adhesion. The major FA regulatory sequence within SV (SV342-571) binds to the LIM domains of two proteins in the zyxin family, thyroid receptor–interacting protein 6 (TRIP6) and lipoma-preferred partner (LPP), but not to zyxin itself. SV and TRIP6 colocalize within large FAs, where TRIP6 may help recruit SV. RNAi-mediated decreases in either protein increase cell adhesion to fibronectin. TRIP6 partially rescues SV effects on stress fibers and FAs, apparently by mislocating SV away from FAs. Thus, SV interactions with TRIP6 at FAs promote loss of FA structure and function. SV and TRIP6 binding partners suggest several specific mechanisms through which the SV–TRIP6 interaction may regulate FA maturation and/or disassembly

    Formal Modeling and Analysis of the MAL-Associated Biological Regulatory Network: Insight into Cerebral Malaria

    Get PDF
    The discrete modeling formalism of René Thomas is a well known approach for the modeling and analysis of Biological Regulatory Networks (BRNs). This formalism uses a set of parameters which reflect the dynamics of the BRN under study. These parameters are initially unknown but may be deduced from the appropriately chosen observed dynamics of a BRN. The discrete model can be further enriched by using the model checking tool HyTech along with delay parameters. This paves the way to accurately analyse a BRN and to make predictions about critical trajectories which lead to a normal or diseased response. In this paper, we apply the formal discrete and hybrid (discrete and continuous) modeling approaches to characterize behavior of the BRN associated with MyD88-adapter-like (MAL) – a key protein involved with innate immune response to infections. In order to demonstrate the practical effectiveness of our current work, different trajectories and corresponding conditions that may lead to the development of cerebral malaria (CM) are identified. Our results suggest that the system converges towards hyperinflammation if Bruton's tyrosine kinase (BTK) remains constitutively active along with pre-existing high cytokine levels which may play an important role in CM pathogenesis

    Protein Kinase A Dependent Phosphorylation of Apical Membrane Antigen 1 Plays an Important Role in Erythrocyte Invasion by the Malaria Parasite

    Get PDF
    Apicomplexan parasites are obligate intracellular parasites that infect a variety of hosts, causing significant diseases in livestock and humans. The invasive forms of the parasites invade their host cells by gliding motility, an active process driven by parasite adhesion proteins and molecular motors. A crucial point during host cell invasion is the formation of a ring-shaped area of intimate contact between the parasite and the host known as a tight junction. As the invasive zoite propels itself into the host-cell, the junction moves down the length of the parasite. This process must be tightly regulated and signalling is likely to play a role in this event. One crucial protein for tight-junction formation is the apical membrane antigen 1 (AMA1). Here we have investigated the phosphorylation status of this key player in the invasion process in the human malaria parasite Plasmodium falciparum. We show that the cytoplasmic tail of P. falciparum AMA1 is phosphorylated at serine 610. We provide evidence that the enzyme responsible for serine 610 phosphorylation is the cAMP regulated protein kinase A (PfPKA). Importantly, mutation of AMA1 serine 610 to alanine abrogates phosphorylation of AMA1 in vivo and dramatically impedes invasion. In addition to shedding unexpected new light on AMA1 function, this work represents the first time PKA has been implicated in merozoite invasion

    Regulation of Plasmodium falciparum Glideosome Associated Protein 45 (PfGAP45) Phosphorylation

    Get PDF
    The actomyosin motor complex of the glideosome provides the force needed by apicomplexan parasites such as Toxoplasma gondii (Tg) and Plasmodium falciparum (Pf) to invade their host cells and for gliding motility of their motile forms. Glideosome Associated Protein 45 (PfGAP45) is an essential component of the glideosome complex as it facilitates anchoring and effective functioning of the motor. Dissection of events that regulate PfGAP45 may provide insights into how the motor and the glideosome operate. We found that PfGAP45 is phosphorylated in response to Phospholipase C (PLC) and calcium signaling. It is phosphorylated by P. falciparum kinases Protein Kinase B (PfPKB) and Calcium Dependent Protein Kinase 1 (PfCDPK1), which are calcium dependent enzymes, at S89, S103 and S149. The Phospholipase C pathway influenced the phosphorylation of S103 and S149. The phosphorylation of PfGAP45 at these sites is differentially regulated during parasite development. The localization of PfGAP45 and its association may be independent of the phosphorylation of these sites. PfGAP45 regulation in response to calcium fits in well with the previously described role of calcium in host cell invasion by malaria parasite

    Quantitative in vivo Analyses Reveal Calcium-dependent Phosphorylation Sites and Identifies a Novel Component of the Toxoplasma Invasion Motor Complex

    Get PDF
    Apicomplexan parasites depend on the invasion of host cells for survival and proliferation. Calcium-dependent signaling pathways appear to be essential for micronemal release and gliding motility, yet the target of activated kinases remains largely unknown. We have characterized calcium-dependent phosphorylation events during Toxoplasma host cell invasion. Stimulation of live tachyzoites with Ca2+-mobilizing drugs leads to phosphorylation of numerous parasite proteins, as shown by differential 2-DE display of 32[P]-labeled protein extracts. Multi-dimensional Protein Identification Technology (MudPIT) identified ∼546 phosphorylation sites on over 300 Toxoplasma proteins, including 10 sites on the actomyosin invasion motor. Using a Stable Isotope of Amino Acids in Culture (SILAC)-based quantitative LC-MS/MS analyses we monitored changes in the abundance and phosphorylation of the invasion motor complex and defined Ca2+-dependent phosphorylation patterns on three of its components - GAP45, MLC1 and MyoA. Furthermore, calcium-dependent phosphorylation of six residues across GAP45, MLC1 and MyoA is correlated with invasion motor activity. By analyzing proteins that appear to associate more strongly with the invasion motor upon calcium stimulation we have also identified a novel 15-kDa Calmodulin-like protein that likely represents the MyoA Essential Light Chain of the Toxoplasma invasion motor. This suggests that invasion motor activity could be regulated not only by phosphorylation but also by the direct binding of calcium ions to this new component
    corecore