4,744 research outputs found
Garden varieties: how attractive are recommended garden plants to butterflies?
One way the public can engage in insect conservation is through wildlife gardening, including the growing of insect-friendly flowers as sources of nectar. However, plant varieties differ in the types of insects they attract. To determine which garden plants attracted which butterflies, we counted butterflies nectaring on 11 varieties of summer-flowering garden plants in a rural garden in East Sussex, UK. These plants were all from a list of 100 varieties considered attractive to British butterflies, and included the five varieties specifically listed by the UK charity Butterfly Conservation as best for summer nectar. A total of 2659 flower visits from 14 butterfly and one moth species were observed. We performed a principal components analysis which showed contrasting patterns between the species attracted to Origanum vulgare and Buddleia davidii. The “butterfly bush” Buddleia attracted many nymphalines, such as the peacock, Inachis io, but very few satyrines such as the gatekeeper, Pyronia tithonus, which mostly visited Origanum. Eupatorium cannibinum had the highest Simpson’s Diversity score of 0.75, while Buddleia and Origanum were lower, scoring 0.66 and 0.50 respectively. No one plant was good at attracting all observed butterfly species, as each attracted only a subset of the butterfly community. We conclude that to create a butterfly-friendly garden, a variety of plant species are required as nectar sources for butterflies. Furthermore, garden plant recommendations can probably benefit from being more precise as to the species of butterfly they attract
Recommended from our members
Reprograming of gut microbiome energy metabolism by the FUT2 Crohn's disease risk polymorphism.
Fucosyltransferase 2 (FUT2) is an enzyme that is responsible for the synthesis of the H antigen in body fluids and on the intestinal mucosa. The H antigen is an oligosaccharide moiety that acts as both an attachment site and carbon source for intestinal bacteria. Non-secretors, who are homozygous for the loss-of-function alleles of FUT2 gene (sese), have increased susceptibility to Crohn's disease (CD). To characterize the effect of FUT2 polymorphism on the mucosal ecosystem, we profiled the microbiome, meta-proteome and meta-metabolome of 75 endoscopic lavage samples from the cecum and sigmoid of 39 healthy subjects (12 SeSe, 18 Sese and 9 sese). Imputed metagenomic analysis revealed perturbations of energy metabolism in the microbiome of non-secretor and heterozygote individuals, notably the enrichment of carbohydrate and lipid metabolism, cofactor and vitamin metabolism and glycan biosynthesis and metabolism-related pathways, and the depletion of amino-acid biosynthesis and metabolism. Similar changes were observed in mice bearing the FUT2(-/-) genotype. Metabolomic analysis of human specimens revealed concordant as well as novel changes in the levels of several metabolites. Human metaproteomic analysis indicated that these functional changes were accompanied by sub-clinical levels of inflammation in the local intestinal mucosa. Therefore, the colonic microbiota of non-secretors is altered at both the compositional and functional levels, affecting the host mucosal state and potentially explaining the association of FUT2 genotype and CD susceptibility
Marine turtle harvest in a mixed small-scale fishery: Evidence for revised management measures
Copyright © 2013 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Ocean and Coastal Management. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Ocean and Coastal Management, 2013, Vol. 82, pp. 34 – 42 DOI: http://dx.doi.org/10.1016/j.ocecoaman.2013.05.004Small-scale fisheries (SSF) account for around half of the world's marine and inland fisheries, but their impact on the marine environment is usually under-estimated owing to difficulties in monitoring and regulation. Successful management of mixed SSF requires holistic approaches that sustainably exploit target species, consider non-target species and maintain fisher livelihoods. For two years, we studied the marine turtle fishery in the Turks and Caicos Islands (TCI) in the Wider Caribbean Region, where the main export fisheries are queen conch (Strombus gigas) and the spiny lobster (Panulirus argus); with fin-fish, green turtles (Chelonia mydas) and hawksbill turtles (Eretmochelys imbricata) taken for domestic consumption. We evaluate the turtle harvest in relation to the other fisheries and recommend legislation and management alternatives. We demonstrate the connectivity between multi-species fisheries and artisanal turtle capture: with increasing lobster catch-per-unit-effort (CPUE), hawksbill catch increased whilst green turtle catch decreased. With increasing conch CPUE, hawksbill catch declined and there was no demonstrable effect on green turtle catch. We estimate 176–324 green and 114–277 hawksbill turtles are harvested annually in TCI: the largest documented legal hawksbill fishery in the western Atlantic. Of particular concern is the capture of adult turtles. Current legislation focuses take on larger individuals that are key to population maintenance. Considering these data we recommend the introduction of maximum size limits for both species and a closed season on hawksbill take during the lobster fishing season. Our results highlight the need to manage turtles as part of a broader approach to SSF management
Effective computational methods for hybrid stochastic gene networks
At the scale of the individual cell, protein production is a stochastic
process with multiple time scales, combining quick and slow random steps with
discontinuous and smooth variation. Hybrid stochastic processes, in particular
piecewise-deterministic Markov processes (PDMP), are well adapted for
describing such situations. PDMPs approximate the jump Markov processes
traditionally used as models for stochastic chemical reaction networks.
Although hybrid modelling is now well established in biology, these models
remain computationally challenging. We propose several improved methods for
computing time dependent multivariate probability distributions (MPD) of PDMP
models of gene networks. In these models, the promoter dynamics is described by
a finite state, continuous time Markov process, whereas the mRNA and protein
levels follow ordinary differential equations (ODEs). The Monte-Carlo method
combines direct simulation of the PDMP with analytic solutions of the ODEs. The
push-forward method numerically computes the probability measure advected by
the deterministic ODE flow, through the use of analytic expressions of the
corresponding semigroup. Compared to earlier versions of this method, the
probability of the promoter states sequence is computed beyond the naive mean
field theory and adapted for non-linear regulation functions
Electroweak Gauge-Boson Production at Small q_T: Infrared Safety from the Collinear Anomaly
Using methods from effective field theory, we develop a novel, systematic
framework for the calculation of the cross sections for electroweak gauge-boson
production at small and very small transverse momentum q_T, in which large
logarithms of the scale ratio M_V/q_T are resummed to all orders. These cross
sections receive logarithmically enhanced corrections from two sources: the
running of the hard matching coefficient and the collinear factorization
anomaly. The anomaly leads to the dynamical generation of a non-perturbative
scale q_* ~ M_V e^{-const/\alpha_s(M_V)}, which protects the processes from
receiving large long-distance hadronic contributions. Expanding the cross
sections in either \alpha_s or q_T generates strongly divergent series, which
must be resummed. As a by-product, we obtain an explicit non-perturbative
expression for the intercept of the cross sections at q_T=0, including the
normalization and first-order \alpha_s(q_*) correction. We perform a detailed
numerical comparison of our predictions with the available data on the
transverse-momentum distribution in Z-boson production at the Tevatron and LHC.Comment: 34 pages, 9 figure
Effect of preoperative thoracic duct drainage on canine kidney transplantation
Chronic drainage of the thoracic duct to the esophagus was developed in dogs, and its efficacy in immunomodulation was tested using kidney transplantation. Compared to 9.7 days in the control, the mean animal survival was prolonged to 9.9 days, 17.8 days, and 18.5 days when TDD was applied preoperatively for 3 weeks, 6 weeks, and 9 weeks, respectively. Prolongation was significant after 6 weeks. Patency of the fistula was 93.5, 80.4, and 76.1% at respective weeks. Number of peripheral T-lymphocytes determined by a new monoclonal antibody diminished after 3 weeks. All animals were in normal health, requiring no special care for fluid, electrolyte, or protein replacement
Gene mobility promotes the spread of resistance in bacterial populations
Theory predicts that horizontal gene transfer (HGT) expands the selective conditions under which genes spread in bacterial populations. Whereas vertically inherited genes can only spread by positively selected clonal expansion, mobile genetic elements can drive fixation of genes by infectious HGT. We tested this using populations of Pseudomonas fluorescens and the conjugative mercury resistance (Hg R) plasmid pQBR57. HGT expanded the selective conditions allowing the spread of Hg R: Chromosomal Hg R only increased in frequency under positive selection, whereas plasmid-encoded Hg R reached fixation with or without positive selection. Tracking plasmid dynamics over time revealed that the mode of Hg R inheritance varied across mercury environments. Under mercury selection, the spread of Hg R was driven primarily by clonal expansion while in the absence of mercury Hg R dynamics were dominated by infectious transfer. Thus, HGT is most likely to drive the spread of resistance genes in environments where resistance is useless
Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships
Background: Consistent compositional shifts in the gut microbiota are observed in IBD and other chronic intestinal disorders and may contribute to pathogenesis. The identities of microbial biomolecular mechanisms and metabolic products responsible for disease phenotypes remain to be determined, as do the means by which such microbial functions may be therapeutically modified. Results: The composition of the microbiota and metabolites in gut microbiome samples in 47 subjects were determined. Samples were obtained by endoscopic mucosal lavage from the cecum and sigmoid colon regions, and each sample was sequenced using the 16S rRNA gene V4 region (Illumina-HiSeq 2000 platform) and assessed by UPLC mass spectroscopy. Spearman correlations were used to identify widespread, statistically significant microbial-metabolite relationships. Metagenomes for identified microbial OTUs were imputed using PICRUSt, and KEGG metabolic pathway modules for imputed genes were assigned using HUMAnN. The resulting metabolic pathway abundances were mostly concordant with metabolite data. Analysis of the metabolome-driven distribution of OTU phylogeny and function revealed clusters of clades that were both metabolically and metagenomically similar. Conclusions: The results suggest that microbes are syntropic with mucosal metabolome composition and therefore may be the source of and/or dependent upon gut epithelial metabolites. The consistent relationship between inferred metagenomic function and assayed metabolites suggests that metagenomic composition is predictive to a reasonable degree of microbial community metabolite pools. The finding that certain metabolites strongly correlate with microbial community structure raises the possibility of targeting metabolites for monitoring and/or therapeutically manipulating microbial community function in IBD and other chronic diseases
Direct photon production with effective field theory
The production of hard photons in hadronic collisions is studied using
Soft-Collinear Effective Theory (SCET). This is the first application of SCET
to a physical, observable cross section involving energetic partons in more
than two directions. A factorization formula is derived which involves a
non-trivial interplay of the angular dependence in the hard and soft functions,
both quark and gluon jet functions, and multiple partonic channels. The
relevant hard, jet and soft functions are computed to one loop and their
anomalous dimensions are determined to three loops. The final resummed
inclusive direct photon distribution is valid to next-to-next-to-leading
logarithmic order (NNLL), one order beyond previous work. The result is
improved by including non-logarithmic terms and photon isolation cuts through
matching, and compared to Tevatron data and to fixed order results at the
Tevatron and the LHC. The resummed cross section has a significantly smaller
theoretical uncertainty than the next-to-leading fixed-order result,
particularly at high transverse momentum.Comment: 42 pages, 9 figures; v2: references added, minor changes; v3: typos;
v4: typos, corrections in (16), (47), (72
Characterization of dry-stack interlocking compressed earth blocks
Earth has been a traditional building material to construct houses in Africa. One of the most common techniques is the use of sun dried or kiln fired adobe bricks with mud mortar. Fired bricks are the main cause for deforestation in countries like Malawi. Although this technique is low-cost, the bricks vary largely in shape, strength and durability. This leads to weak houses which suffer considerable damage during floods and seismic events. One solution is the use of dry-stack masonry with stabilized interlocking compressed earth blocks (ICEB). This technology has the potential of substituting the current bricks by a more sustainable kind of block. This study was made in the context of the HiLoTec project, which focuses on houses in rural areas of developing countries. For this study, Malawi was chosen for a case study. This paper presents the experimental results of tests made with dry-stack ICEBs. Soil samples from Malawi were taken and studied. Since the experimental campaign could not be carried out in Malawi, a homogenization process of Portuguese soil was made to produce ICEBs at the University of Minho, Portugal. Then, the compression and tensile strength of the materials was determined via small cylinder samples. Subsequently, the compression and flexural strength of units were determined. Finally, tests to determine the compressive strength of both prisms and masonry wallets and to determine the initial shear strength of the dry interfaces were carried out. This work provides valuable data for low-cost eco-efficient housingThis work was carried out under the research project HiLoTec - Development of a Sustainable Self-Construction
System for Developing Countries. The authors wish to thank Mota-Engil Constructing Group for supporting this project
- …
