762 research outputs found
GALEX and Optical Light Curves of EF Eridanus During a Low State: the Puzzling Source of UV Light
Low state optical photometry of EF Eri during an extended low accretion state
combined with GALEX near and far UV time-resolved photometry reveals a source
of UV flux that is much larger than the underlying 9500K white dwarf, and that
is highly modulated on the orbital period. The near UV and optical light curves
can be modeled with a 20,000K spot but no spot model can explain both the large
amplitude FUV variations and the SED. The limitations of limb darkening,
cyclotron and magnetic white dwarf models in explaining the observations are
discussed.Comment: 10 pages, 4 figures to be published in ApJ Letter
Completeness of algebraic CPS simulations
The algebraic lambda calculus and the linear algebraic lambda calculus are
two extensions of the classical lambda calculus with linear combinations of
terms. They arise independently in distinct contexts: the former is a fragment
of the differential lambda calculus, the latter is a candidate lambda calculus
for quantum computation. They differ in the handling of application arguments
and algebraic rules. The two languages can simulate each other using an
algebraic extension of the well-known call-by-value and call-by-name CPS
translations. These simulations are sound, in that they preserve reductions. In
this paper, we prove that the simulations are actually complete, strengthening
the connection between the two languages.Comment: In Proceedings DCM 2011, arXiv:1207.682
GALEX, Optical and IR Light Curves of MQ Dra: UV Excesses at Low Accretion Rates
Ultraviolet light curves constructed from NUV and FUV detectors on GALEX
reveal large amplitude variations during the orbital period of the Low
Accretion Rate Polar MQ Dra (SDSSJ1553+55). This unexpected variation from a UV
source is similar to that seen and discussed in the Polar EF Eri during its low
state of accretion, even though the accretion rate in MQ Dra is an order of
magnitude lower than even the low state of EF Eri. The similarity in phasing of
the UV and optical light curves in MQ Dra imply a similar location for the
source of light. We explore the possibilities of hot spots and cyclotron
emission with simple models fit to the UV, optical and IR light curves of MQ
Dra. To match the GALEX light curves with a single temperature circular hot
spot requires different sizes of spots for the NUV and FUV, while a cyclotron
model that can produce the optical harmonics with a magnetic field near 60 MG
requires multipoles with fields > 200 MG to match the UV fluxes.Comment: accepted for ApJ; 15 pages, 7 tables, 8 fig
Physiology
Contains reports on four research projects.Bell Laboratories, Inc.Ortho InstrumentsThe Rowland Foundation, Inc
Semantics of a Typed Algebraic Lambda-Calculus
Algebraic lambda-calculi have been studied in various ways, but their
semantics remain mostly untouched. In this paper we propose a semantic analysis
of a general simply-typed lambda-calculus endowed with a structure of vector
space. We sketch the relation with two established vectorial lambda-calculi.
Then we study the problems arising from the addition of a fixed point
combinator and how to modify the equational theory to solve them. We sketch an
algebraic vectorial PCF and its possible denotational interpretations
GALEX and Optical Light Curves of WX LMi, SDSSJ103100.5+202832.2 and SDSSJ121209.31+013627.7
{\it GALEX} near ultraviolet (NUV) and far-ultraviolet (FUV) light curves of
three extremely low accretion rate polars show distinct modulations in their UV
light curves. While these three systems have a range of magnetic fields from 13
to 70 MG, and of late type secondaries (including a likely brown dwarf in
SDSSJ121209.31+013627.7), the accretion rates are similar, and the UV
observations imply some mechanism is operating to create enhanced emission
zones on the white dwarf. The UV variations match in phase to the two magnetic
poles viewed in the optical in WX LMi and to the single poles evident in the
optical in SDSSJ1212109.31+013627.7 and SDSSJ103100.55+202832.2. Simple spot
models of the UV light curves show that if hot spots are responsible for the UV
variations, the temperatures are on the order of 10,000-14,000K. For the single
pole systems, the size of the FUV spot must be smaller than the NUV and in all
cases, the geometry is likely more complicated than a simple circular spot.Comment: 29 pages, 4 tables, 10 figures, Astrophysical Journal, accepte
The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III
The Sloan Digital Sky Survey (SDSS) started a new phase in August 2008, with
new instrumentation and new surveys focused on Galactic structure and chemical
evolution, measurements of the baryon oscillation feature in the clustering of
galaxies and the quasar Ly alpha forest, and a radial velocity search for
planets around ~8000 stars. This paper describes the first data release of
SDSS-III (and the eighth counting from the beginning of the SDSS). The release
includes five-band imaging of roughly 5200 deg^2 in the Southern Galactic Cap,
bringing the total footprint of the SDSS imaging to 14,555 deg^2, or over a
third of the Celestial Sphere. All the imaging data have been reprocessed with
an improved sky-subtraction algorithm and a final, self-consistent photometric
recalibration and flat-field determination. This release also includes all data
from the second phase of the Sloan Extension for Galactic Understanding and
Evolution (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars
at both high and low Galactic latitudes. All the more than half a million
stellar spectra obtained with the SDSS spectrograph have been reprocessed
through an improved stellar parameters pipeline, which has better determination
of metallicity for high metallicity stars.Comment: Astrophysical Journal Supplements, in press (minor updates from
submitted version
- …
