4,657 research outputs found
Langevin analysis for time-nonlocal Brownian motion with algebraic memories and delay interactions
Starting from a Langevin equation with memory describing the attraction of a particle to
a center, we investigate its transport and response properties corresponding to two
special forms of the memory: one is algebraic, i.e., power-law, and the other involves a
delay. We examine the properties of the Green function of the Langevin equation and
encounter Mittag-Leffler and Lambert W-functions well-known in the literature. In the
presence of white noise, we study two experimental situations, one involving the motional
narrowing of spectral lines and the other the steady-state size of the particle under
consideration. By comparing the results to counterparts for a simple exponential memory,
we uncover instructive similarities and differences. Perhaps surprisingly, we find that
the Balescu-Swenson theorem that states that non-Markoffian equations do not add anything
new to the description of steady-state or equilibrium
observables is violated for our system in that the saturation size of the
particle in the steady-state depends on the memory function utilized. A natural
generalization of the Smoluchowski equation for the time-local case is examined and found
to satisfy the Balescu-Swenson theorem and describe accurately the first moment but not
the second and higher moments. We also calculate two-time correlation functions for all
three cases of the memory, and show how they differ from (tend to) their Markoffian
counterparts at small (large) values of the difference between the two times
Langevin analysis for time-nonlocal Brownian motion with algebraic memories and delay interactions
Starting from a Langevin equation with memory describing the attraction of a particle to
a center, we investigate its transport and response properties corresponding to two
special forms of the memory: one is algebraic, i.e., power-law, and the other involves a
delay. We examine the properties of the Green function of the Langevin equation and
encounter Mittag-Leffler and Lambert W-functions well-known in the literature. In the
presence of white noise, we study two experimental situations, one involving the motional
narrowing of spectral lines and the other the steady-state size of the particle under
consideration. By comparing the results to counterparts for a simple exponential memory,
we uncover instructive similarities and differences. Perhaps surprisingly, we find that
the Balescu-Swenson theorem that states that non-Markoffian equations do not add anything
new to the description of steady-state or equilibrium
observables is violated for our system in that the saturation size of the
particle in the steady-state depends on the memory function utilized. A natural
generalization of the Smoluchowski equation for the time-local case is examined and found
to satisfy the Balescu-Swenson theorem and describe accurately the first moment but not
the second and higher moments. We also calculate two-time correlation functions for all
three cases of the memory, and show how they differ from (tend to) their Markoffian
counterparts at small (large) values of the difference between the two times
Collider Phenomenology with Split-UED
We investigate the collider implications of Split Universal Extra Dimensions.
The non-vanishing fermion mass in the bulk, which is consistent with the
KK-parity, largely modifies the phenomenology of Minimal Universal Exta
Dimensions. We scrutinize the behavior of couplings and study the discovery
reach of the Tevatron and the LHC for level-2 Kaluza-Klein modes in the
dilepton channel, which would indicates the presence of the extra dimensions.
Observation of large event rates for dilepton resonances can result from a
nontrivial fermion mass profile along the extra dimensions, which, in turn, may
corroborate extra dimensional explanation for the observation of the positron
excess in cosmic rays.Comment: 23 pages, 15 figure
Electroweak Gauge-Boson Production at Small q_T: Infrared Safety from the Collinear Anomaly
Using methods from effective field theory, we develop a novel, systematic
framework for the calculation of the cross sections for electroweak gauge-boson
production at small and very small transverse momentum q_T, in which large
logarithms of the scale ratio M_V/q_T are resummed to all orders. These cross
sections receive logarithmically enhanced corrections from two sources: the
running of the hard matching coefficient and the collinear factorization
anomaly. The anomaly leads to the dynamical generation of a non-perturbative
scale q_* ~ M_V e^{-const/\alpha_s(M_V)}, which protects the processes from
receiving large long-distance hadronic contributions. Expanding the cross
sections in either \alpha_s or q_T generates strongly divergent series, which
must be resummed. As a by-product, we obtain an explicit non-perturbative
expression for the intercept of the cross sections at q_T=0, including the
normalization and first-order \alpha_s(q_*) correction. We perform a detailed
numerical comparison of our predictions with the available data on the
transverse-momentum distribution in Z-boson production at the Tevatron and LHC.Comment: 34 pages, 9 figure
Angoff anchor statements: setting a flawed gold standard?
http://www.mededpublish.org/manuscripts/120
LHC Predictions from a Tevatron Anomaly in the Top Quark Forward-Backward Asymmetry
We examine the implications of the recent CDF measurement of the top-quark
forward-backward asymmetry, focusing on a scenario with a new color octet
vector boson at 1-3 TeV. We study several models, as well as a general
effective field theory, and determine the parameter space which provides the
best simultaneous fit to the CDF asymmetry, the Tevatron top pair production
cross section, and the exclusion regions from LHC dijet resonance and contact
interaction searches. Flavor constraints on these models are more subtle and
less severe than the literature indicates. We find a large region of allowed
parameter space at high axigluon mass and a smaller region at low mass; we
match the latter to an SU(3)xSU(3)/SU(3) coset model with a heavy vector-like
fermion. Our scenario produces discoverable effects at the LHC with only 1-2
inverse femtobarns of luminosity at 7-8 TeV. Lastly, we point out that a
Tevatron measurement of the b-quark forward-backward asymmetry would be very
helpful in characterizing the physics underlying the top-quark asymmetry.Comment: 35 pages, 10 figures, 4 table
Iron, silicate, and light co-limitation of three Southern Ocean diatom species
The effect of combined iron, silicate, and light co-limitation was investigated in the three diatom species Actinocyclus sp. Ehrenberg, Chaetoceros dichaeta Ehrenberg, and Chaetoceros debilis Cleve, isolated from the Southern Ocean (SO). Growth of all species was co-limited by iron and silicate, reflected in a significant increase in the number of cell divisions compared to the control. Lowest relative Si uptake and drastic frustule malformation was found under iron and silicate co-limitation in C. dichaeta, while Si limitation in general caused cell elongation in both Chaetoceros species. Higher light intensities similar to SO surface conditions showed a negative impact on growth of C. dichaeta and Actinocyclus sp. and no effect on C. debilis. This is in contrast to the assumed light limitation of SO diatoms due to deep wind driven mixing. Our results suggest that growth and species composition of Southern Ocean diatoms is influenced by a sensitive interaction of the abiotic factors, iron, silicate, and light
Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice
Dirac points lie at the heart of many fascinating phenomena in condensed
matter physics, from massless electrons in graphene to the emergence of
conducting edge states in topological insulators [1, 2]. At a Dirac point, two
energy bands intersect linearly and the particles behave as relativistic Dirac
fermions. In solids, the rigid structure of the material sets the mass and
velocity of the particles, as well as their interactions. A different, highly
flexible approach is to create model systems using fermionic atoms trapped in
the periodic potential of interfering laser beams, a method which so far has
only been applied to explore simple lattice structures [3, 4]. Here we report
on the creation of Dirac points with adjustable properties in a tunable
honeycomb optical lattice. Using momentum-resolved interband transitions, we
observe a minimum band gap inside the Brillouin zone at the position of the
Dirac points. We exploit the unique tunability of our lattice potential to
adjust the effective mass of the Dirac fermions by breaking inversion symmetry.
Moreover, changing the lattice anisotropy allows us to move the position of the
Dirac points inside the Brillouin zone. When increasing the anisotropy beyond a
critical limit, the two Dirac points merge and annihilate each other - a
situation which has recently attracted considerable theoretical interest [5-9],
but seems extremely challenging to observe in solids [10]. We map out this
topological transition in lattice parameter space and find excellent agreement
with ab initio calculations. Our results not only pave the way to model
materials where the topology of the band structure plays a crucial role, but
also provide an avenue to explore many-body phases resulting from the interplay
of complex lattice geometries with interactions [11, 12]
Heavy-to-light baryonic form factors at large recoil
We analyze heavy-to-light baryonic form factors at large recoil and derive
the scaling behavior of these form factors in the heavy quark limit. It is
shown that only one universal form factor is needed to parameterize Lambda_b to
p and Lambda_b to Lambda matrix elements in the large recoil limit of light
baryons, while hadronic matrix elements of Lambda_b to Sigma transition vanish
in the large energy limit of Sigma baryon due to the space-time parity
symmetry. The scaling law of the soft form factor eta(P^{\prime} \cdot v),
P^{\prime} and v being the momentum of nucleon and the velocity of Lambda_b
baryon, responsible for Lambda_b to p transitions is also derived using the
nucleon distribution amplitudes in leading conformal spin. In particular, we
verify that this scaling behavior is in full agreement with that from
light-cone sum rule approach in the heavy-quark limit. With these form factors,
we further investigate the Lambda baryon polarization asymmetry alpha in
Lambda_b to Lambda gamma and the forward-backward asymmetry A_{FB} in Lambda_b
to Lambda l^{+} l^{-}. Both two observables (alpha and A_{FB}) are independent
of hadronic form factors in leading power of 1/m_b and in leading order of
alpha_s. We also extend the analysis of hadronic matrix elements for Omega_b to
Omega transitions to rare Omega_b to Omega gamma and Omega_b to Omega l^{+}
l^{-} decays and find that radiative Omega_b to Omega gamma decay is probably
the most promising FCNC b to s radiative baryonic decay channel. In addition,
it is interesting to notice that the zero-point of forward-backward asymmetry
of Omega_b to Omega l^{+} l^{-} is the same as the one for Lambda_b to Lambda
l^{+} l^{-} to leading order accuracy provided that the form factors
\bar{\zeta}_i (i=3, 4, 5) are numerically as small as indicated from the quark
model.Comment: 19 page
Evidence-based practice educational intervention studies: A systematic review of what is taught and how it is measured
Abstract Background Despite the established interest in evidence-based practice (EBP) as a core competence for clinicians, evidence for how best to teach and evaluate EBP remains weak. We sought to systematically assess coverage of the five EBP steps, review the outcome domains measured, and assess the properties of the instruments used in studies evaluating EBP educational interventions. Methods We conducted a systematic review of controlled studies (i.e. studies with a separate control group) which had investigated the effect of EBP educational interventions. We used citation analysis technique and tracked the forward and backward citations of the index articles (i.e. the systematic reviews and primary studies included in an overview of the effect of EBP teaching) using Web of Science until May 2017. We extracted information on intervention content (grouped into the five EBP steps), and the outcome domains assessed. We also searched the literature for published reliability and validity data of the EBP instruments used. Results Of 1831 records identified, 302 full-text articles were screened, and 85 included. Of these, 46 (54%) studies were randomised trials, 51 (60%) included postgraduate level participants, and 63 (75%) taught medical professionals. EBP Step 3 (critical appraisal) was the most frequently taught step (63 studies; 74%). Only 10 (12%) of the studies taught content which addressed all five EBP steps. Of the 85 studies, 52 (61%) evaluated EBP skills, 39 (46%) knowledge, 35 (41%) attitudes, 19 (22%) behaviours, 15 (18%) self-efficacy, and 7 (8%) measured reactions to EBP teaching delivery. Of the 24 instruments used in the included studies, 6 were high-quality (achieved ≥3 types of established validity evidence) and these were used in 14 (29%) of the 52 studies that measured EBP skills; 14 (41%) of the 39 studies that measured EBP knowledge; and 8 (26%) of the 35 studies that measured EBP attitude. Conclusions Most EBP educational interventions which have been evaluated in controlled studies focus on teaching only some of the EBP steps (predominantly critically appraisal of evidence) and did not use high-quality instruments to measure outcomes. Educational packages and instruments which address all EBP steps are needed to improve EBP teaching
- …
