1,944 research outputs found
Cosmic rays in astrospheres
Cosmic rays passing through large astrospheres can be efficiently cooled
inside these "cavities" in the interstellar medium. Moreover, the energy
spectra of these energetic particles are already modulated in front of the
astrospherical bow shocks. We study the cosmic ray flux in and around lambda
Cephei as an example for an astrosphere. The large-scale plasma flow is modeled
hydrodynamically with radiative cooling. We studied the cosmic ray flux in a
stellar wind cavity using a transport model based on stochastic differential
equations. The required parameters, most importantly, the elements of the
diffusion tensor, are based on the heliospheric parameters. The magnetic field
required for the diffusion coefficients is calculated kinematically. We discuss
the transport in an astrospheric scenario with varying parameters for the
transport coefficients. We show that large stellar wind cavities can act as
sinks for the galactic cosmic ray flux and thus can give rise to small-scale
anisotropies in the direction to the observer. Small-scale cosmic ray
anisotropies can naturally be explained by the modulation of cosmic ray spectra
in huge stellar wind cavities
TPU positioning in the global research and educational environment
Томск вошел в число инновационных городов мира по результатам авторитетного рейтинга "Innovation Cities Global Index 2012-2013". Всего в рейтинг попали 445из 1542 городов мира, где проводились исследования. Российских городов - 20. Большой вклад в инновационную составляющую города вносит Томский консор-циум научно-образовательных и научных организаций, возглавляемый ректором ТПУ П.С. Чубиком. Университеты становятся активными игроками не только в производстве новых знаний, но и в их распространении и использовании посредствоминновационной деятельности.Tomsk is rated as one of the global innovative cities by the reputable ranking Innovation Cities Global Index 2012-2013. The survey covered 1542 cities of the world, with 445 ofthem having been included in the ranked list. There were 20 Russian cities rated. A great contribution to the Tomsk innovative component is provided by Tomsk Consortium ofResearch and Educational Organizations headed by P.S. Chubik, TPU Rector. Universities are becoming actively involved not only in the generation of new knowledge, but also in its dissemination and application by means of innovative activities
Chemical composition of modern and fossil hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation : part 2, alkaline earth elements as tracers of watershed hydrochemistry and provenance
This study demonstrates that alkaline earth elements in enamel of hippopotamids, in particular Ba and Sr, are tracers for water provenance and hydrochemistry in terrestrial settings. The studied specimens are permanent premolar and molar teeth found in modern and fossil lacustrine sediments of the Western Branch of the East African Rift system (Lake Kikorongo, Lake Albert, and Lake Malawi) and from modern fluvial environments of the Nile River.
Concentrations in enamel vary by two orders of magnitude for Ba (120–9336 μg g−1) as well as for Sr (9–2150 μg g−1). The variations are partially induced during post-mortem alteration and during amelogenesis, but the major contribution originates ultimately from the variable water chemistry in the habitats of the hippopotamids which is controlled by the lithologies and weathering processes in the watershed areas. Amelogenesis causes a distinct distribution of MgO, Ba and Sr in modern and fossil enamel, in that element concentrations increase along profiles from the outer rim towards the enamel–dentin junction by a factor of 1.3–1.9. These elements are well correlated in single specimens, thus suggesting that their distribution is determined by a common, single process, which can be described by closed system Rayleigh crystallization of bioapatite in vivo.
Enamel from most hippopotamid specimens has Sr/Ca and Ba/Ca which are typical for herbivores. However, Ba/Sr ranges from 0.1 to 3 and varies on spatial and temporal scales. Thus, Sr concentrations and Ba/Sr in enamel differentiate between habitats having basaltic mantle rocks or Archean crustal rocks as the ultimate sources of Sr and Ba. This provenance signal is modulated by climate change. In Miocene to Pleistocene enamel from the Lake Albert region, Ba/Sr decreases systematically with time from 2 to 0.5. This trend can be correlated with changes in climate from humid to arid, in vegetation from C3 to C4 biomass as well as with increasing evaporation of the lake water. The most plausible explanation is that Ba mobility decreased with increasing aridification due to preferential deposition with clay and Fe-oxide-hydroxide or barite on the watershed of Lake Albert
Quantification of MagLIF morphology using the Mallat Scattering Transformation
The morphology of the stagnated plasma resulting from Magnetized Liner
Inertial Fusion (MagLIF) is measured by imaging the self-emission x-rays coming
from the multi-keV plasma. Equivalent diagnostic response can be generated by
integrated radiation-magnetohydrodynamic (rad-MHD) simulations from programs
such as HYDRA and GORGON. There have been only limited quantitative ways to
compare the image morphology, that is the texture, of simulations and
experiments. We have developed a metric of image morphology based on the Mallat
Scattering Transformation (MST), a transformation that has proved to be
effective at distinguishing textures, sounds, and written characters. This
metric is designed, demonstrated, and refined by classifying ensembles (i.e.,
classes) of synthetic stagnation images, and by regressing an ensemble of
synthetic stagnation images to the morphology (i.e., model) parameters used to
generate the synthetic images. We use this metric to quantitatively compare
simulations to experimental images, experimental images to each other, and to
estimate the morphological parameters of the experimental images with
uncertainty. This coordinate space has proved very adept at doing a
sophisticated relative background subtraction in the MST space. This was needed
to compare the experimental self emission images to the rad-MHD simulation
images.Comment: 19 pages, 18 figures, 3 tables, 4 animations, accepted for
publication in Physics of Plasmas; arXiv admin note: substantial text overlap
with arXiv:1911.0235
Efficiency of Lift Production in Flapping and Gliding Flight of Swifts
Many flying animals use both flapping and gliding flight as part of their routine behaviour. These two kinematic patterns impose conflicting requirements on wing design for aerodynamic efficiency and, in the absence of extreme morphing, wings cannot be optimised for both flight modes. In gliding flight, the wing experiences uniform incident flow and the optimal shape is a high aspect ratio wing with an elliptical planform. In flapping flight, on the other hand, the wing tip travels faster than the root, creating a spanwise velocity gradient. To compensate, the optimal wing shape should taper towards the tip (reducing the local chord) and/or twist from root to tip (reducing local angle of attack). We hypothesised that, if a bird is limited in its ability to morph its wings and adapt its wing shape to suit both flight modes, then a preference towards flapping flight optimization will be expected since this is the most energetically demanding flight mode. We tested this by studying a well-known flap-gliding species, the common swift, by measuring the wakes generated by two birds, one in gliding and one in flapping flight in a wind tunnel. We calculated span efficiency, the efficiency of lift production, and found that the flapping swift had consistently higher span efficiency than the gliding swift. This supports our hypothesis and suggests that even though swifts have been shown previously to increase their lift-to-drag ratio substantially when gliding, the wing morphology is tuned to be more aerodynamically efficient in generating lift during flapping. Since body drag can be assumed to be similar for both flapping and gliding, it follows that the higher total drag in flapping flight compared with gliding flight is primarily a consequence of an increase in wing profile drag due to the flapping motion, exceeding the reduction in induced drag
The EEF1A2 gene expression as risk predictor in localized prostate cancer
Background: Besides clinical stage and Gleason score, risk-stratification of prostate cancer in the pretherapeutic setting mainly relies on the serum PSA level. Yet, this is associated with many uncertainties. With regard to therapy decision-making, additional markers are needed to allow an exact risk prediction. Eukaryotic translation elongation factor 1 alpha 2 (EEF1A2) was previously suggested as driver of tumor progression and potential biomarker. In the present study its functional and prognostic relevance in prostate cancer was investigated. Methods: EEF1A2 expression was analyzed in two cohorts of patients (n = 40 and n = 59) with localized PCa. Additionally data from two large expression dataset (MSKCC, Cell, 2010 with n = 131 localized, n = 19 metastatic PCa and TCGA provisional data, n = 499) of PCa patients were reanalyzed. The expression of EEF1A2 was correlated with histopathology features and biochemical recurrence (BCR). To evaluate the influence of EEF1A2 on proliferation and migration of metastatic PC3 cells, siRNA interference was used. Statistical significance was tested with t-test, Mann-Whitney-test, Pearson correlation and log-rank test. Results: qRT-PCR revealed EEF1A2 to be significantly overexpressed in PCa tissue, with an increase according to tumor stage in one cohort (p = 0.0443). In silico analyses in the MSKCC cohort confirmed the overexpression of EEF1A2 in localized PCa with high Gleason score (p = 0.0142) and in metastatic lesions (p = 0.0038). Patients with EEF1A2 overexpression had a significantly shorter BCR-free survival (p = 0.0028). EEF1A2 expression was not correlated with serum PSA levels. Similar results were seen in the TCGA cohort, where EEF1A2 overexpression only occurred in tumors with Gleason 7 or higher. Patients with elevated EEF1A2 expression had a significantly shorter BCR-free survival (p = 0.043). EEF1A2 knockdown significantly impaired the migration, but not the proliferation of metastatic PC3 cells. Conclusion: The overexpression of EEF1A2 is a frequent event in localized PCa and is associated with histopathology features and a shorter biochemical recurrence-free survival. Due to its independence from serum PSA levels, EEF1A2 could serve as valuable biomarker in risk-stratification of localized PCa
On FO2 quantifier alternation over words
We show that each level of the quantifier alternation hierarchy within
FO^2[<] -- the 2-variable fragment of the first order logic of order on words
-- is a variety of languages. We then use the notion of condensed rankers, a
refinement of the rankers defined by Weis and Immerman, to produce a decidable
hierarchy of varieties which is interwoven with the quantifier alternation
hierarchy -- and conjecturally equal to it. It follows that the latter
hierarchy is decidable within one unit: given a formula alpha in FO^2[<], one
can effectively compute an integer m such that alpha is equivalent to a formula
with at most m+1 alternating blocks of quantifiers, but not to a formula with
only m-1 blocks. This is a much more precise result than what is known about
the quantifier alternation hierarchy within FO[<], where no decidability result
is known beyond the very first levels
Body fat MRS
The increasing levels of obesity, and its associated comorbidities, have prompted a reassessment of the techniques used for assessing body fat, including content, distribution, and composition. Magnetic resonance spectroscopy (MRS) is one among the many invaluable in vivo tools available today to evaluate the role of body fat in health and disease. However, although MRS has become a powerful technique for assessing ectopic fat in vivo, it has had limited use in other areas of research associated with body fat. MRS has found some success as a fast method to determine whole body adiposity in rodent models of disease, as well as a noninvasive method of obtaining an index of the overall composition of body fat in human subjects. Its more significant use has been in the understanding of bone marrow fat content, where important advances have been made, especially in longitudinal studies. In conclusion, in the area of body fat, MRS continues to be an adjunct technique to more precise and versatile MRI methods
Chemical composition of modern and fossil Hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation - Part 2: Alkaline earth elements as tracers of watershed hydrochemistry and provenance [Discussion paper]
For reconstructing environmental change in terrestrial realms the geochemistry of fossil bioapatite in bones and teeth is among the most promising applications. This study demonstrates that alkaline earth elements in enamel of Hippopotamids, in particular Ba and Sr are tracers for water provenance and hydrochemistry. The studied specimens are molar teeth from Hippopotamids found in modern and fossil lacustrine settings of the Western Branch of the East African Rift system (Lake Kikorongo, Lake Albert, and Lake Malawi) and from modern fluvial environments of the Nile River.
Concentrations in enamel vary by ca. two orders of magnitude for Ba (120–9336 μg g−1) as well as for Sr (9–2150 μg g−1). Concentration variations in enamel are partly induced during post-mortem alteration and during amelogenesis, but the major contribution originates from the variable water chemistry in the habitats of the Hippopotamids which is dominated by the lithologies and weathering processes in the watershed areas. Amelogenesis causes a distinct distribution of Ba and Sr in modern and fossil enamel, in that element concentrations increase along profiles from the outer rim towards the enamel-dentin junction by a factor of 1.3–1.5. These elements are well correlated with MgO and Na2O in single specimens, thus suggesting that their distribution is determined by a common, single process. Presuming that the shape of the tooth is established at the end of the secretion process and apatite composition is in equilibrium with the enamel fluid, the maturation process can be modeled by closed system Rayleigh crystallization.
Enamel from many Hippopotamid specimens has Sr/Ca and Ba/Ca which are typical for herbivores, but the compositions extend well into the levels of plants and carnivores. Within enamel from single specimens these element ratios covary and provide a specific fingerprint of the Hippopotamid habitat. All specimens together, however, define subparallel trends with different Ba/Sr ranging from 0.1 to 3. This ratio varies on spatial and temporal scales and traces provenance signals as well as the fractionation of the elements in the hydrological cycle. Thus, Sr concentrations and Ba/Sr in enamel differentiate between habitats having basaltic or Archean crustal rocks as the ultimate sources of Sr and Ba. The provenance signal is modulated by climate change. In Miocene to Pleistocene enamel from the Lake Albert region, Ba/Sr decreases systematically with time from about 2 to 0.5. This trend can be correlated with changes in climate from humid to arid in vegetation from C3 to C4 biomass as well as with increasing evaporation of the lake water. The most plausible explanation is that with time, Ba mobility decreased relative to that of Sr. This can arise if preferential adsorption of Ba to clay and Fe-oxide-hydroxide is related to increasing aridification. Additionally, weathering solutions and lake water can become increasingly alkaline and barite becomes stable. In this case, Ba will be preferentially deposited on the watershed of Lake Albert and rivers with low Ba/Sr will feed the habitats of the Hippopotamids
- …
