682 research outputs found
Detection of Atmospheric Cherenkov Radiation Using Solar Heliostat Mirrors
The gamma-ray energy region between 20 and 250 GeV is largely unexplored.
Ground-based atmospheric Cherenkov detectors offer a possible way to explore
this region, but large Cherenkov photon collection areas are needed to achieve
low energy thresholds. This paper discusses the development of a Cherenkov
detector using the heliostat mirrors of a solar power plant as the primary
collector. As part of this development, we built a prototype detector
consisting of four heliostat mirrors and used it to record atmospheric
Cherenkov radiation produced in extensive air showers created by cosmic ray
particles.Comment: 16 latex pages, 8 postscript figures, uses psfig.sty, to be published
in Astroparticle Physic
Invariant higher-order variational problems II
Motivated by applications in computational anatomy, we consider a
second-order problem in the calculus of variations on object manifolds that are
acted upon by Lie groups of smooth invertible transformations. This problem
leads to solution curves known as Riemannian cubics on object manifolds that
are endowed with normal metrics. The prime examples of such object manifolds
are the symmetric spaces. We characterize the class of cubics on object
manifolds that can be lifted horizontally to cubics on the group of
transformations. Conversely, we show that certain types of non-horizontal
geodesics on the group of transformations project to cubics. Finally, we apply
second-order Lagrange--Poincar\'e reduction to the problem of Riemannian cubics
on the group of transformations. This leads to a reduced form of the equations
that reveals the obstruction for the projection of a cubic on a transformation
group to again be a cubic on its object manifold.Comment: 40 pages, 1 figure. First version -- comments welcome
Recipient IL28B polymorphism is an important independent predictor of posttransplant diabetes mellitus in liver transplant patients with chronic hepatitis C
IL28B polymorphisms are strongly associated with response to treatment for HCV infection. IL28B acts on interferon-stimulated genes via the JAK-STAT pathway, which has been implicated in development of insulin resistance. We investigated whether IL28B polymorphisms are associated with posttransplant diabetes mellitus (DM). Consecutive HCV patients who underwent liver transplantation between 1-1995 and 1-2011 were studied. Genotyping of the polymorphism rs12979860 was performed on DNA collected from donors and recipients. Posttransplant DM was screened for by fasting blood glucoses every 1-3 months. Of 221 included patients, 69 developed posttransplant DM (31%). Twenty-two patients with recipient IL28B genotype TT (48%), 25 with IL28B genotype CT (25%) and 22 with IL28B genotype CC (29%) developed posttransplant DM. TT genotype was statistically significantly associated with posttransplant DM over time (log rank p = 0.012 for TT vs. CT and p = 0.045 for TT vs. CC). Multivariate Cox regression analysis correcting for donor age, body mass index, baseline serum glucose, baseline serum cholesterol, recipient age and treated rejection, showed that recipient IL28B genotype TT was independently associated with posttransplant DM (hazard ratio 2.51; 95% confidence interval 1.17-5.40; p = 0.011). We conclude that the risk of developing posttransplant DM is significantly increased in recipients carrying the TT polymorphism of the IL28B gene. An analysis of liver transplant recipients with hepatitis C virus infection finds that the risk of developing posttransplant diabetes mellitus is significantly increased in recipients carrying the TT polymorphism of the IL28B gene
CDMS, Supersymmetry and Extra Dimensions
The CDMS experiment aims to directly detect massive, cold dark matter
particles originating from the Milky Way halo. Charge and lattice excitations
are detected after a particle scatters in a Ge or Si crystal kept at ~30 mK,
allowing to separate nuclear recoils from the dominating electromagnetic
background. The operation of 12 detectors in the Soudan mine for 75 live days
in 2004 delivered no evidence for a signal, yielding stringent limits on dark
matter candidates from supersymmetry and universal extra dimensions. Thirty Ge
and Si detectors are presently installed in the Soudan cryostat, and operating
at base temperature. The run scheduled to start in 2006 is expected to yield a
one order of magnitude increase in dark matter sensitivity.Comment: To be published in the proceedings of the 7th UCLA symposium on
sources and detection of dark matter and dark energy in the universe, Marina
del Rey, Feb 22-24, 200
Effects of rapid prey evolution on predator-prey cycles
We study the qualitative properties of population cycles in a predator-prey
system where genetic variability allows contemporary rapid evolution of the
prey. Previous numerical studies have found that prey evolution in response to
changing predation risk can have major quantitative and qualitative effects on
predator-prey cycles, including: (i) large increases in cycle period, (ii)
changes in phase relations (so that predator and prey are cycling exactly out
of phase, rather than the classical quarter-period phase lag), and (iii)
"cryptic" cycles in which total prey density remains nearly constant while
predator density and prey traits cycle. Here we focus on a chemostat model
motivated by our experimental system [Fussmann et al. 2000,Yoshida et al. 2003]
with algae (prey) and rotifers (predators), in which the prey exhibit rapid
evolution in their level of defense against predation. We show that the effects
of rapid prey evolution are robust and general, and furthermore that they occur
in a specific but biologically relevant region of parameter space: when traits
that greatly reduce predation risk are relatively cheap (in terms of reductions
in other fitness components), when there is coexistence between the two prey
types and the predator, and when the interaction between predators and
undefended prey alone would produce cycles. Because defense has been shown to
be inexpensive, even cost-free, in a number of systems [Andersson and Levin
1999, Gagneux et al. 2006,Yoshida et al. 2004], our discoveries may well be
reproduced in other model systems, and in nature. Finally, some of our key
results are extended to a general model in which functional forms for the
predation rate and prey birth rate are not specified.Comment: 35 pages, 8 figure
Global distribution and trends of tropospheric ozone: An observation-based review
Tropospheric ozone plays a major role in Earth’s atmospheric chemistry processes and also acts as an air pollutant and greenhouse gas. Due to its short lifetime, and dependence on sunlight and precursor emissions from natural and anthropogenic sources, tropospheric ozone’s abundance is highly variable in space and time on seasonal, interannual and decadal time-scales. Recent, and sometimes rapid, changes in observed ozone mixing ratios and ozone precursor emissions inspired us to produce this up-to-date overview of tropospheric ozone’s global distribution and trends. Much of the text is a synthesis of in situ and remotely sensed ozone observations reported in the peer-reviewed literature, but we also include some new and extended analyses using well-known and referenced datasets to draw connections between ozone trends and distributions in different regions of the world. In addition, we provide a brief evaluation of the accuracy of rural or remote surface ozone trends calculated by three state-of-the-science chemistry-climate models, the tools used by scientists to fill the gaps in our knowledge of global tropospheric ozone distribution and trends.JRC.H.2 - Air and Climat
Pulsar-wind nebulae and magnetar outflows: observations at radio, X-ray, and gamma-ray wavelengths
We review observations of several classes of neutron-star-powered outflows:
pulsar-wind nebulae (PWNe) inside shell supernova remnants (SNRs), PWNe
interacting directly with interstellar medium (ISM), and magnetar-powered
outflows. We describe radio, X-ray, and gamma-ray observations of PWNe,
focusing first on integrated spectral-energy distributions (SEDs) and global
spectral properties. High-resolution X-ray imaging of PWNe shows a bewildering
array of morphologies, with jets, trails, and other structures. Several of the
23 so far identified magnetars show evidence for continuous or sporadic
emission of material, sometimes associated with giant flares, and a few
possible "magnetar-wind nebulae" have been recently identified.Comment: 61 pages, 44 figures (reduced in quality for size reasons). Published
in Space Science Reviews, "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray
Bursts and Blazars: Physics of Extreme Energy Release
Magnetic Catalysis: A Review
We give an overview of the magnetic catalysis phenomenon. In the framework of
quantum field theory, magnetic catalysis is broadly defined as an enhancement
of dynamical symmetry breaking by an external magnetic field. We start from a
brief discussion of spontaneous symmetry breaking and the role of a magnetic
field in its a dynamics. This is followed by a detailed presentation of the
essential features of the phenomenon. In particular, we emphasize that the
dimensional reduction plays a profound role in the pairing dynamics in a
magnetic field. Using the general nature of underlying physics and its
robustness with respect to interaction types and model content, we argue that
magnetic catalysis is a universal and model-independent phenomenon. In support
of this claim, we show how magnetic catalysis is realized in various models
with short-range and long-range interactions. We argue that the general nature
of the phenomenon implies a wide range of potential applications: from certain
types of solid state systems to models in cosmology, particle and nuclear
physics. We finish the review with general remarks about magnetic catalysis and
an outlook for future research.Comment: 37 pages, to appear in Lect. Notes Phys. "Strongly interacting matter
in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A.
Schmitt, H.-U. Yee. Version 2: references adde
TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma
Telomerase reverse transcriptase (TERT) promoter mutations were recently shown to drive telomerase activity in various cancer types, including medulloblastoma. However, the clinical and biological implications of TERT mutations in medulloblastoma have not been described. Hence, we sought to describe these mutations and their impact in a subgroup-specific manner. We analyzed the TERT promoter by direct sequencing and genotyping in 466 medulloblastomas. The mutational distributions were determined according to subgroup affiliation, demographics, and clinical, prognostic, and molecular features. Integrated genomics approaches were used to identify specific somatic copy number alterations in TERT promoter-mutated and wild-type tumors. Overall, TERT promoter mutations were identified in 21 % of medulloblastomas. Strikingly, the highest frequencies of TERT mutations were observed in SHH (83 %; 55/66) and WNT (31 %; 4/13) medulloblastomas derived from adult patients. Group 3 and Group 4 harbored this alteration in <5 % of cases and showed no association wit
Consequences of various landscape-scale ecosystem management strategies and fire cycles on age-class structure and harvest in boreal forests
At the landscape scale, one of the key indicators of sustainable forest management is the age-class distribution of stands, since it provides a coarse synopsis of habitat potential, structural complexity, and stand volume, and it is directly modified by timber extraction and wildfire. To explore the consequences of several landscape-scale boreal forest management strategies on age-class structure in the Mauricie region of Quebec, we used spatially explicit simulation modelling. Our study investigated three different harvesting strategies (the one currently practiced and two different strategies to maintain late seral stands) and interactions between fire and harvesting on stand age-class distribution. We found that the legacy of initial forested age structure and its spatial configuration can pose short- (<50 years) to medium-term (150-300 years) challenges to balancing wood supply and ecological objectives. Also, ongoing disturbance by fire, even at relatively long cycles in relation to historic levels, can further constrain the achievement of both timber and biodiversity goals. For example, when fire was combined with management, harvest shortfalls occurred in all scenarios with a fire cycle of 100 years and most scenarios with a fire cycle of 150 years. Even a fire cycle of 500 years led to a reduction in older forest when its maintenance was not a primary constraint. Our results highlight the need to consider the broad-scale effects of natural disturbance when developing ecosystem management policies and the importance of prioritizing objectives when planning for multiple resource use
- …
