69,813 research outputs found

    Fundamental Constant Observational Bounds on the Variability of the QCD Scale

    Full text link
    Many physical theories beyond the Standard Model predict time variations of basic physics parameters. Direct measurement of the time variations of these parameters is very difficult or impossible to achieve. By contrast, measurements of fundamental constants are relatively easy to achieve, both in the laboratory and by astronomical spectra of atoms and molecules in the early universe. In this work measurements of the proton to electron mass ratio μ\mu and the fine structure constant α\alpha are combined to place mildly model dependent limits on the fractional variation of the Quantum Chromodynamic Scale and the sum of the fractional variations of the Higgs Vacuum Expectation Value and the Yukawa couplings on time scales of more than half the age of the universe. The addition of another model parameter allows the fractional variation of the Higgs VEV and the Yukawa couplings to be computed separately. Limits on their variation are found at the level of less than 5×1055 \times 10^{-5} over the past seven gigayears. A model dependent relation between the expected fractional variation of α\alpha relative to μ\mu tightens the limits to 10710^{-7} over the same time span. Limits on the present day rate of change of the constants and parameters are then calculated using slow roll quintessence. A primary result of this work is that studies of the dimensionless fundamental constants such as α\alpha and μ\mu, whose values depend on the values of the physics parameters, are excellent monitors of the limits on the time variation of these parameters.Comment: Accepted for publication in the Monthly Notices of the Royal Astronomical Society, 8 pages, 5 figure

    Spinning in the NAPLAN ether: 'Postscript on the control societies' and the seduction of education in Australia

    Get PDF
    This paper applies concepts Deleuze developed in his ‘Postscript on the Societies of Control’, especially those relating to modulatory power, dividuation and control, to aspects of Australian schooling to explore how this transition is manifesting itself. Two modulatory machines of assessment, NAPLAN and My Schools, are examined as a means to better understand how the disciplinary institution is changing as a result of modulation. This transition from discipline to modulation is visible in the declining importance of the disciplinary teacher/student relationship as a measure of the success of the educative process. The transition occurs through seduction because that which purports to measure classroom quality is in fact a serpent of modulation that produces simulacra of the disciplinary classroom. The effect is to sever what happens in the disciplinary space from its representations in a luminiferous ether that overlays the classroom

    Scattering by a semi-infinite lattice and the excitation of Bloch waves

    Get PDF
    The interaction of a time-harmonic plane wave with a semi-infinite lattice of identical circular cylinders is considered. No assumptions about the radius of the cylinders, or their scattering properties, are made. Multipole expansions and Graf’s addition theorem are used to reduce the boundary value problem to an infinite linear system of equations. Applying the z transform and disregarding interaction effects due to certain strongly damped modes then leads to a matrix Wiener–Hopf equation with rational elements. This is solved by a straightforward method that does not require matrix factorisation. Implementation of the method requires that the zeros of the matrix determinant be located numerically, and once this is achieved, all far field quantities can be calculated. Numerical results that show the proportion of energy reflected back from the edge are presented for several different lattice geometries. 1

    Sample average approximation with heavier tails II: localization in stochastic convex optimization and persistence results for the Lasso

    Full text link
    We present exponential finite-sample nonasymptotic deviation inequalities for the SAA estimator's near-optimal solution set over the class of stochastic optimization problems with heavy-tailed random \emph{convex} functions in the objective and constraints. Such setting is better suited for problems where a sub-Gaussian data generating distribution is less expected, e.g., in stochastic portfolio optimization. One of our contributions is to exploit \emph{convexity} of the perturbed objective and the perturbed constraints as a property which entails \emph{localized} deviation inequalities for joint feasibility and optimality guarantees. This means that our bounds are significantly tighter in terms of diameter and metric entropy since they depend only on the near-optimal solution set but not on the whole feasible set. As a result, we obtain a much sharper sample complexity estimate when compared to a general nonconvex problem. In our analysis, we derive some localized deterministic perturbation error bounds for convex optimization problems which are of independent interest. To obtain our results, we only assume a metric regular convex feasible set, possibly not satisfying the Slater condition and not having a metric regular solution set. In this general setting, joint near feasibility and near optimality are guaranteed. If in addition the set satisfies the Slater condition, we obtain finite-sample simultaneous \emph{exact} feasibility and near optimality guarantees (for a sufficiently small tolerance). Another contribution of our work is to present, as a proof of concept of our localized techniques, a persistent result for a variant of the LASSO estimator under very weak assumptions on the data generating distribution.Comment: 34 pages. Some correction

    E2 component in subcoulomb breakup of ^{8}B

    Get PDF
    We calculate the angular distribution and total cross section of the ^{7}Be fragment emitted in the break up reaction of ^{8}B on ^{58}Ni and ^{208}Pb targets at the subCoulomb beam energy of 25.8 MeV, within the non-relativistic theory of Coulomb excitation with proper three-body kinematics. The relative contributions of the E1, E2 and M1 multipolarities to the cross sections are determined. The E2 component makes up about 65% and 40% of the ^{7}Be total cross section for the ^{58}Ni and ^{208}Pb targets respectively. We find that the extraction of the astrophysical S-factor, S_{17}(0), for the ^{7}Be(p,\gamma)^8B reaction at solar energies from the measurements of the cross sections of the ^{7}Be fragment in the Coulomb dissociation of ^{8}B at sub-Coulomb energies is still not free from the uncertainties of the E2 component.Comment: Revised version (correcting earlier errors) submitted to Phys. Letts.

    Relativistic Winds from Compact Gamma-Ray Sources: II. Pair Loading and Radiative Acceleration in Gamma-ray Bursts

    Get PDF
    We consider the effects of rapid pair creation by an intense pulse of gamma-rays propagating ahead of a relativistic shock. Side-scattered photons colliding with the main gamma-ray beam amplify the density of scattering charges. The acceleration rate of the pair-loaded medium is calculated, and its limiting bulk Lorentz factor related to the spectrum and compactness of the photon source. One obtains, as a result, a definite prediction for the relative inertia in baryons and pairs. The deceleration of a relativistic shock in the moving medium, and the resulting synchrotron emissivity, are compared with existing calculations for a static medium. The radiative efficiency is increased dramatically by pair loading. When the initial ambient density exceeds a critical value, the scattering depth traversed by the main gamma-ray pulse rises above unity, and the pulse is broadened. These considerations place significant constraints on burst progenitors: a pre-burst mass loss rate exceeding 10^{-5} M_\odot per year is difficult to reconcile with individual pulses narrower than 10 s, unless the radiative efficiency is low. An anisotropic gamma-ray flux (on an angular scale \Gamma^{-1} or larger) drives a large velocity shear that greatly increases the energy in the seed magnetic field forward of the propagating shock.Comment: 19 pp., LaTeX (aaspp4.sty), revised 12/23/99, Ap. J. in press; summary section added and several minor improvements in presentatio

    Variable stars in the globular cluster NGC 3201. I. Multimode SX Phe-type variables

    Full text link
    We report on the discovery of eleven multimode SX Phoenicis--type blue stragglers in the field of the southern globular cluster NGC 3201. In these variables both radial and non-radial modes are excited. For three variables the derived period ratio is close to that observed in SX Phoenicis itself, suggesting that these stars are pulsating in the fundamental and the first-overtone radial modes. Using the McNamara (1997) period-luminosity relation we have estimated the apparent distance modulus to NGC 3201 to be 14.08±0.06±0.1\pm0.06\pm0.1mag.Comment: 10 pages, requires mn2e.cls,contact the first author at [email protected] for high-resolution figure

    Cosmic Analogues of the Stern-Gerlach Experiment and the Detection of Light Bosons

    Full text link
    We show that, by studying the arrival times of radio pulses from highly-magnetized pulsars, it may be possible to detect light spin-0 bosons (such as axions and axion-like particles) with a much greater sensitivity, over a broad particle mass range than is currently reachable by terrestrial experiments and indirect astrophysical bounds. In particular, we study the effect of splitting of photon-boson beams under intense magnetic field gradients in magnetars and show that radio pulses (at meter wavelengths) may be split and shift by a discernible phase down to a photon-boson coupling constant of g ~ 1e-14 [1/GeV]; i.e., about four orders of magnitude lower than current upper limits on g. The effect increases linearly with photon wavelength with split pulses having equal fluxes and similar polarizations. These properties make the identification of beam-splitting and beam deflection effects straightforward with currently available data. Better understanding of radio emission from magnetars is, however, required to confidently exclude regions in the parameter space when such effects are not observed.Comment: 4 pages, 3 figure
    corecore