8,486 research outputs found
ERGs on the brain: the benefits of simultaneous flash retinal and cortical responses in paediatric cerebral visual impairment
PURPOSE: To highlight the importance of simultaneous flash electroretinogram (ERG) and visual evoked potential (VEP) recording to differentiate a true flash VEP response from an artefact caused by the intrusion of the ERG on a mid-frontal reference electrode in cases of severe cerebral visual impairment (CVI). METHODS: We report an observational case series of four children with severe CVI who underwent simultaneous flash ERG and VEP recordings. Flash VEPs from Oz-Fz and lower lid skin ERGs referred to Fz were recorded simultaneously to Grass intensity setting 4 flash stimulation. RESULTS: In all cases, atypical, but reproducible VEPs were evident. Comparison of the timing and waveform of the VEPs and ERGs showed the occipital responses were inverted ERGs and no true flash VEP was evident. CONCLUSIONS: While ISCEV and neurophysiology standards do not require the simultaneous recording of the flash ERG with the VEP, these cases highlight the usefulness of this non-invasive technique particularly in suspected paediatric cerebral visual impairment to differentiate a true VEP from an artefact caused by ERG contamination
Is there a gap between recommended and ‘real world’ practice in the management of depression in young people? A medical file audit of practice
BACKGROUND: Literature has shown that dissemination of guidelines alone is insufficient to ensure that guideline recommendations are incorporated into every day clinical practice. METHODS: We aimed to investigate the gaps between guideline recommendations and clinical practice in the management of young people with depression by undertaking an audit of medical files in a catchment area public mental health service for 15 to 25 year olds in Melbourne, Australia. RESULTS: The results showed that the assessment and recording of depression severity to ensure appropriate treatment planning was not systematic nor consistent; that the majority of young people (74.5%) were prescribed an antidepressant before an adequate trial of psychotherapy was undertaken and that less than 50% were monitored for depression symptom improvement and antidepressant treatment emergent suicide related behaviours (35% and 30% respectively). Encouragingly 92% of first line prescriptions for those aged 18 years or under who were previously antidepressant-naïve was for fluoxetine as recommended. CONCLUSIONS: This research has highlighted the need for targeted strategies to ensure effective implementation. These strategies might include practice system tools that allow for systematic monitoring of depression symptoms and adverse side effects, particularly suicide related behaviours. Additionally, youth specific psychotherapy that incorporates the most effective components for this age group, delivered in a youth friendly way would likely aid effective implementation of guideline recommendations for engagement in an adequate trial of psychotherapy before medication is initiated
Classification of neurological abnormalities in children with congenital melanocytic naevus syndrome identifies magnetic resonance imaging as the best predictor of clinical outcome
Background: The spectrum of central nervous system (CNS) abnormalities described in association with congenital melanocytic naevi (CMN) includes congenital, acquired, melanotic and nonmelanotic pathology. Historically, symptomatic CNS abnormalities were considered to carry a poor prognosis, although studies from large centres have suggested a much wider variation in outcome.
Objectives: To establish whether routine MRI of the CNS is a clinically relevant investigation in children with multiple CMN (more than one at birth), and to subclassify radiological abnormalities.
Methods: Of 376 patients seen between 1991 and 2013, 289 fulfilled our criterion for a single screening CNS MRI, which since 2008 has been more than one CMN at birth, independent of size and site of the largest naevus. Cutaneous phenotyping and radiological variables were combined in a multiple regression model of long-term outcome measures (abnormal neurodevelopment, seizures, requirement for neurosurgery).
Results: Twenty-one per cent of children with multiple CMN had an abnormal MRI. Abnormal MRI was the most significant predictor of all outcome measures. Abnormalities were subclassified into group 1 ‘intraparenchymal melanosis alone’ (n = 28) and group 2 ‘all other pathology’ (n = 18). Group 1 was not associated with malignancy or death during the study period, even when symptomatic with seizures or developmental delay, whereas group 2 showed a much more complex picture, requiring individual assessment.
Conclusions: For screening for congenital neurological lesions a single MRI in multiple CMN is a clinically relevant strategy. Any child with a stepwise change in neurological/developmental symptoms or signs should have an MRI with contrast of the brain and spine to look for new CNS melanoma
Influenza transmission in a cohort of households with children: 2010-2011
published_or_final_versio
Neutrino-driven Explosions
The question why and how core-collapse supernovae (SNe) explode is one of the
central and most long-standing riddles of stellar astrophysics. A solution is
crucial for deciphering the SN phenomenon, for predicting observable signals
such as light curves and spectra, nucleosynthesis, neutrinos, and gravitational
waves, for defining the role of SNe in the evolution of galaxies, and for
explaining the birth conditions and properties of neutron stars (NSs) and
stellar-mass black holes. Since the formation of such compact remnants releases
over hundred times more energy in neutrinos than the SN in the explosion,
neutrinos can be the decisive agents for powering the SN outburst. According to
the standard paradigm of the neutrino-driven mechanism, the energy transfer by
the intense neutrino flux to the medium behind the stagnating core-bounce
shock, assisted by violent hydrodynamic mass motions (sometimes subsumed by the
term "turbulence"), revives the outward shock motion and thus initiates the SN
blast. Because of the weak coupling of neutrinos in the region of this energy
deposition, detailed, multidimensional hydrodynamic models including neutrino
transport and a wide variety of physics are needed to assess the viability of
the mechanism. Owing to advanced numerical codes and increasing supercomputer
power, considerable progress has been achieved in our understanding of the
physical processes that have to act in concert for the success of
neutrino-driven explosions. First studies begin to reveal observational
implications and avenues to test the theoretical picture by data from
individual SNe and SN remnants but also from population-integrated observables.
While models will be further refined, a real breakthrough is expected through
the next Galactic core-collapse SN, when neutrinos and gravitational waves can
be used to probe the conditions deep inside the dying star. (abridged)Comment: Author version of chapter for 'Handbook of Supernovae,' edited by A.
Alsabti and P. Murdin, Springer. 54 pages, 13 figure
Vibronic Structure in Room Temperature Photoluminescence of the Halide Perovskite Cs3Bi2Br9
We report a study on the optical properties of the layered polymorph of vacancy-ordered triple perovskite Cs3Bi2Br9. The electronic structure, determined from density functional theory calculations, shows the top of the valence band and bottom of the conduction band minima are, unusually, dominated by Bi s and p states, respectively. This produces a sharp exciton peak in the absorption spectra with a binding energy that was approximated to be 940 meV, which is substantially stronger than values found in other halide perovskites and, instead, more closely reflects values seen in alkali halide crystals. This large binding energy is indicative of a strongly localized character and results in a highly structured emission at room temperature as the exciton couples to vibrations in the lattice
Developing predictive insight into changing water systems: use-inspired hydrologic science for the Anthropocene
Globally, many different kinds of water resources management issues call for policy- and infrastructure-based responses. Yet responsible decision-making about water resources management raises a fundamental challenge for hydrologists: making predictions about water resources on decadal - to century-long timescales. Obtaining insight into hydrologic futures over 100 yr timescales forces researchers to address internal and exogenous changes in the properties of hydrologic systems. To do this, new hydrologic research must identify, describe and model feedbacks between water
and other changing, coupled environmental subsystems.
These models must be constrained to yield useful insights, despite the many likely sources of uncertainty in their predictions. Chief among these uncertainties are the impacts of the increasing role of human intervention in the global water cycle – a defining challenge for hydrology in the Anthropocene. Here we present a research agenda that proposes a suite of strategies to address these challenges from the perspectives of hydrologic science research. The research agenda focuses on the development of co-evolutionary hydrologic modeling to explore coupling across systems, and to address the implications of this coupling on the long-time behavior
of the coupled systems. Three research directions supportthe development of these models: hydrologic reconstruction, comparative hydrology and model-data learning. These strategies focus on understanding hydrologic processes and feedbacks over long timescales, across many locations, and through strategic coupling of observational and model data in specific systems. We highlight the value of use-inspired and team-based science that is motivated by real-world hydrologic problems but targets improvements in fundamental understanding to support decision-making and management.
Fully realizing the potential of this approach will ultimately require detailed integration of social science and physical science understanding of water systems, and is a priority for the developing field of sociohydrology
Efimov physics beyond three particles
Efimov physics originally refers to a system of three particles. Here we
review recent theoretical progress seeking for manifestations of Efimov physics
in systems composed of more than three particles. Clusters of more than three
bosons are tied to each Efimov trimer, but no independent Efimov physics exists
there beyond three bosons. The case of a few heavy fermions interacting with a
lighter atom is also considered, where the mass ratio of the constituent
particles plays a significant role. Following Efimov's study of the (2+1)
system, the (3+1) system was shown to have its own critical mass ratio to
become Efimovian. We show that the (4+1) system becomes Efimovian at a mass
ratio which is smaller than its sub-systems thresholds, giving a pure five-body
Efimov effect. The (5+1) and (6+1) systems are also discussed, and we show the
absence of 6- and 7-body Efimov physics there
Understanding the limits to generalizability of experimental evolutionary models.
Post print version of article deposited in accordance with SHERPA RoMEO guidelines. The final definitive version is available online at: http://www.nature.com/nature/journal/v455/n7210/abs/nature07152.htmlGiven the difficulty of testing evolutionary and ecological theory in situ, in vitro model systems are attractive alternatives; however, can we appraise whether an experimental result is particular to the in vitro model, and, if so, characterize the systems likely to behave differently and understand why? Here we examine these issues using the relationship between phenotypic diversity and resource input in the T7-Escherichia coli co-evolving system as a case history. We establish a mathematical model of this interaction, framed as one instance of a super-class of host-parasite co-evolutionary models, and show that it captures experimental results. By tuning this model, we then ask how diversity as a function of resource input could behave for alternative co-evolving partners (for example, E. coli with lambda bacteriophages). In contrast to populations lacking bacteriophages, variation in diversity with differences in resources is always found for co-evolving populations, supporting the geographic mosaic theory of co-evolution. The form of this variation is not, however, universal. Details of infectivity are pivotal: in T7-E. coli with a modified gene-for-gene interaction, diversity is low at high resource input, whereas, for matching-allele interactions, maximal diversity is found at high resource input. A combination of in vitro systems and appropriately configured mathematical models is an effective means to isolate results particular to the in vitro system, to characterize systems likely to behave differently and to understand the biology underpinning those alternatives
Gravitational torques imply molecular gas inflow towards the nucleus of M 51
PublishedJournal Article© 2016 ESO.The transport of gas towards the centre of galaxies is critical for black hole feeding and, indirectly, it can control active galactic nucleus (AGN) feedback. We have quantified the molecular gas inflow in the central R< 1 kpc of M 51 to be 1 M⊙/yr, using a new gravitational torque map and the molecular gas traced by the Plateau de Bure Interferometer Arcsecond Whirlpool Survey (PAWS). The nuclear stellar bar is responsible for this gas inflow. We also used torque profiles to estimate the location of dynamical resonances, and the results suggest a corotation for the bar CRbar ∼ 20″, and a corotation for the spiral CRsp ∼ 100″. We demonstrate how important it is to correct 3.6 μm images for dust emission when gravitational torques are to be computed, and we examine further sources of uncertainty. Our observational measurement of gas inflow can be compared with nuclear molecular outflow rates and provide useful constraints for numerical simulations.The authors would like to thank the anonymous referee for a helpful report, as well as Daniela Calzetti, Nick Z. Scoville and Mari Polletta for making the HST/F190N mosaic available to us. We also appreciate valuable comments from Françoise Combes and Sebastian Haan. We acknowledge financial support to the DAGAL network from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007- 2013/ under REA grant agreement number PITN-GA-2011-289313. M.Q. acknowledges the International Max Planck Research School for Astronomy and Cosmic Physics at the University of Heidelberg (IMPRS-HD). S.G.B. thanks support from Spanish grant AYA2012-32295. J.P. acknowledges support from the CNRS programme “Physique et Chimie du Milieu Interstellaire” (PCMI). M.Q., S.E.M., D.C. and A.H. acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG) via grants SCHI 536/7-2,SCHI 536/5-1, and SCHI 536/7-1 as part of the priority program SPP 1573 “ISM-SPP: Physics of the Interstellar Medium”
- …
