22,697 research outputs found

    Exhibition Season: Annual Archaeological Exhibitions in London, 1880s-1930s

    Get PDF
    Annual archaeological exhibitions were a visible symbol of archaeological research. Held mainly in London, the displays encapsulated a network of archaeologists, artists, architects and curators, and showcased the work of the first generations of trained archaeologists. The exhibition catalogues and published reviews of the displays provide a unique method for exploring the reception and sponsorship of archaeological work overseas and its promotion to a fascinated, well connected and well moneyed public. The exhibitions were a space in which conversation and networking were as important as educational enrichment. This paper analyses the social history of the “annual exhibition” in archaeology, highlighting the development and maintenance of the networks behind archaeological research, the geography of London as a way to examine influence in archaeology, and the utility of exhibitions for archaeological publicity during this period of exploration

    Thermal structures: Four decades of progress

    Get PDF
    Since the first supersonic flight in October 1947, the United States has designed, developed and flown flight vehicles within increasingly severe aerothermal environments. Over this period, major advances in engineering capabilities have occurred that will enable the design of thermal structures for high speed flight vehicles in the twenty-first century. Progress in thermal-structures is surveyed for the last four decades to provide a historical perspective for future efforts

    Thermostructural analysis of a scramjet fuel-injection strut

    Get PDF
    Results of a thermal/structural design analysis study of a fuel injection strut for an airframe integrated hydrogen cooled scramjet are presented. It is indicated that a feasible thermal/structural concept has been identified for the static load conditions and that thermal stresses dominate the response. It is suggested that the response of the concept to dynamic loads be investigated

    Integrated thermal-structural analysis of large space structures

    Get PDF
    Optimum performance of large space antennas requires very fine control of the shape of the antenna surface since the shape affects both frequency control and pointing accuracy. A significant factor affecting the antenna shape is the temperature of the structure and the resulting deformation. To accurately predict the temperature of the structure, it is necessary first to accurately predict thermal loads. As the structure orbits the Earth, the thermal loads change constantly so that the thermal-structural response varies continuously throughout the orbit. The results from recent applications of integrated finite element methodology to heat load determination and thermal-structural analysis of large space structures are given. Four areas are concentrated on: (1) the characteristics of the integrated finite element methodology, (2) fundamentals of orbital heat load calculation, (3) description and comparison of some radiation finite elements, and (4) application of the integrated finite-element approach to the thermal-structural analysis of an orbiting truss structure

    Improved finite element methodology for integrated thermal structural analysis

    Get PDF
    An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. New thermal finite elements which yield exact nodal and element temperatures for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions

    Supercomputer implementation of finite element algorithms for high speed compressible flows

    Get PDF
    Prediction of compressible flow phenomena using the finite element method is of recent origin and considerable interest. Two shock capturing finite element formulations for high speed compressible flows are described. A Taylor-Galerkin formulation uses a Taylor series expansion in time coupled with a Galerkin weighted residual statement. The Taylor-Galerkin algorithms use explicit artificial dissipation, and the performance of three dissipation models are compared. A Petrov-Galerkin algorithm has as its basis the concepts of streamline upwinding. Vectorization strategies are developed to implement the finite element formulations on the NASA Langley VPS-32. The vectorization scheme results in finite element programs that use vectors of length of the order of the number of nodes or elements. The use of the vectorization procedure speeds up processing rates by over two orders of magnitude. The Taylor-Galerkin and Petrov-Galerkin algorithms are evaluated for 2D inviscid flows on criteria such as solution accuracy, shock resolution, computational speed and storage requirements. The convergence rates for both algorithms are enhanced by local time-stepping schemes. Extension of the vectorization procedure for predicting 2D viscous and 3D inviscid flows are demonstrated. Conclusions are drawn regarding the applicability of the finite element procedures for realistic problems that require hundreds of thousands of nodes

    The structural synthesis of an ablating thermostructural panel

    Get PDF
    Transient thermal analysis and structural analysis for synthesis of ablating thermostructural panels in planetary entry environmen

    Finite element thermal-structural modeling of orbiting truss structures

    Get PDF
    A description of an integrated finite element (FE) thermal-structural approach for accurate and efficient modeling of large space structures is presented. A geometric model with a common discretization for all analyses is employed. It uses improved thermal elements and the results from the thermal analysis directly in the structural analysis without any intervening data processing. The differences between the conventional FE approach as implemented in large programs and an integrated FE approach currently under development are described. Considerations for thermal modeling of truss members is discussed and three thermal truss finite elements are presented. The performance of these elements was evaluated for typical truss members neglecting joint effects. A simple truss with metallic joints and composite members was studied to evaluate the effectiveness of the approach for realistic truss designs. A study of the effects of aluminum joints on the thermal deformations of a simple, plane truss with composite members showed that joint effects may be significant. Further study is needed to assess the role of joint effects on the deformation of large trusses

    A computer graphics program for general finite element analyses

    Get PDF
    Documentation for a computer graphics program for displays from general finite element analyses is presented. A general description of display options and detailed user instructions are given. Several plots made in structural, thermal and fluid finite element analyses are included to illustrate program options. Sample data files are given to illustrate use of the program
    corecore