875 research outputs found
Recommended from our members
Chemical signatures of aged Pacific marine air: Mixed layer and free troposphere as measured during PEM-West A
The Pacific Ocean is one of the few remaining regions of the northern hemisphere that is relatively free of direct anthropogenic emissions. However, long-range transport of air pollutants is beginning to have a significant impact on the atmosphere over the Pacific. In September and October 1991, NASA conducted the Pacific Exploratory Mission-West A expedition to study the atmospheric chemistry and background budgets of key atmospheric trace species. Aircraft sampling centered on the northern Pacific, 0° to 40°N and 115° to 180°E. The paper summarizes the chemical signature of relatively well-aged Pacific marine air (residence time ≥10 days over the ocean). The chemical signatures show that marine air is not always devoid of continental influences. Aged marine air which circulates around the semipermanent subtropical anticyclone located off the Asian continent is influenced by infusion of continental air with anthropogenic emissions. The infusion occurs as the result of Asian outflow swept off the continent behind eastward moving cold fronts. When compared to aged marine air with a more southerly pathway, this infusion results in enhancements in the mixing ratio of many anthropogenic/continental species and typically those with lifetimes of weeks in the free troposphere. Less enhancement is seen for the short-lived species with lifetimes of a few days as infused continental emissions are depleted during transport (about a week) around the semipermanent subtropical high. Copyright 1996 by the American Geophysical Union
Emerging technologies in physics education
Three emerging technologies in physics education are evaluated from the
interdisciplinary perspective of cognitive science and physics education
research. The technologies - Physlet Physics, the Andes Intelligent Tutoring
System (ITS), and Microcomputer-Based Laboratory (MBL) Tools - are assessed
particularly in terms of their potential at promoting conceptual change,
developing expert-like problem-solving skills, and achieving the goals of the
traditional physics laboratory. Pedagogical methods to maximize the potential
of each educational technology are suggested.Comment: Accepted for publication in the Journal of Science Education and
Technology; 20 page
Magnetic Assisted Navigation in Electrophysiology and Cardiac Resynchronisation: A Review
Magnetic assisted navigation is a new innovation that may prove useful in catheter ablation of cardiac arrhythmias and cardiac resynchronization therapy. The ability to steer extremely floppy catheters and guidewires may allow for these to be positioned safely in previously inaccessible areas of the heart. The integration of other new technology, such as image integration and electroanatomic mapping systems, should advance our abilities further. Although studies have shown the technology to be feasible, with the advantage to the physician of decreased radiation exposure, studies need to be performed to show additional benefit over standard techniques
Spatio-Temporal Characteristics of Global Warming in the Tibetan Plateau during the Last 50 Years Based on a Generalised Temperature Zone - Elevation Model
Temperature is one of the primary factors influencing the climate and ecosystem, and examining its change and fluctuation could elucidate the formation of novel climate patterns and trends. In this study, we constructed a generalised temperature zone elevation model (GTEM) to assess the trends of climate change and temporal-spatial differences in the Tibetan Plateau (TP) using the annual and monthly mean temperatures from 1961-2010 at 144 meteorological stations in and near the TP. The results showed the following: (1) The TP has undergone robust warming over the study period, and the warming rate was 0.318°C/decade. The warming has accelerated during recent decades, especially in the last 20 years, and the warming has been most significant in the winter months, followed by the spring, autumn and summer seasons. (2) Spatially, the zones that became significantly smaller were the temperature zones of -6°C and -4°C, and these have decreased 499.44 and 454.26 thousand sq km from 1961 to 2010 at average rates of 25.1% and 11.7%, respectively, over every 5-year interval. These quickly shrinking zones were located in the northwestern and central TP. (3) The elevation dependency of climate warming existed in the TP during 1961-2010, but this tendency has gradually been weakening due to more rapid warming at lower elevations than in the middle and upper elevations of the TP during 1991-2010. The higher regions and some low altitude valleys of the TP were the most significantly warming regions under the same categorizing criteria. Experimental evidence shows that the GTEM is an effective method to analyse climate changes in high altitude mountainous regions
The Pioneer Anomaly
Radio-metric Doppler tracking data received from the Pioneer 10 and 11
spacecraft from heliocentric distances of 20-70 AU has consistently indicated
the presence of a small, anomalous, blue-shifted frequency drift uniformly
changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was
interpreted as a constant sunward deceleration of each particular spacecraft at
the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of
the Newton's gravitational inverse-square law has become known as the Pioneer
anomaly; the nature of this anomaly remains unexplained. In this review, we
summarize the current knowledge of the physical properties of the anomaly and
the conditions that led to its detection and characterization. We review
various mechanisms proposed to explain the anomaly and discuss the current
state of efforts to determine its nature. A comprehensive new investigation of
the anomalous behavior of the two Pioneers has begun recently. The new efforts
rely on the much-extended set of radio-metric Doppler data for both spacecraft
in conjunction with the newly available complete record of their telemetry
files and a large archive of original project documentation. As the new study
is yet to report its findings, this review provides the necessary background
for the new results to appear in the near future. In particular, we provide a
significant amount of information on the design, operations and behavior of the
two Pioneers during their entire missions, including descriptions of various
data formats and techniques used for their navigation and radio-science data
analysis. As most of this information was recovered relatively recently, it was
not used in the previous studies of the Pioneer anomaly, but it is critical for
the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living
Reviews in Relativit
Polymers for dye transfer inhibition in laundry applications
The deposition of dyes onto lightly colored garments, or onto lighter sections of multicolored garments, during laundry results in fabric discoloration. In particular, there is a requirement to restrict indigo dye transfer between garments. Polymers may be added to detergent formulations as dye transfer inhibitors to prevent dye transfer by blocking the deposition of fugitive dyes in aqueous solution. This article reports the generation of a range of dye transfer inhibitors produced by condensation reactions that are effective in preventing the transfer of unbound indigo dye to a variety of fiber types. Key design rules relating to polymer hydrophilicity and pendant polymer functionality were established for the creation of effective dye transfer inhibitors. Remarkably, polymers at concentrations as low as 0.1 mg/ml were found to be effective in inhibiting indigo deposition on a variety of fiber types, offering great promise for their inclusion within laundry detergent formulations as dye transfer inhibitors
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Observations of bedforms on a dissipative macrotidal beach
NERC NE/H004262/1 and NE/H02543X/1 DRIB
- …
