2,822 research outputs found
Specification Patterns for Robotic Missions
Mobile and general-purpose robots increasingly support our everyday life,
requiring dependable robotics control software. Creating such software mainly
amounts to implementing their complex behaviors known as missions. Recognizing
the need, a large number of domain-specific specification languages has been
proposed. These, in addition to traditional logical languages, allow the use of
formally specified missions for synthesis, verification, simulation, or guiding
the implementation. For instance, the logical language LTL is commonly used by
experts to specify missions, as an input for planners, which synthesize the
behavior a robot should have. Unfortunately, domain-specific languages are
usually tied to specific robot models, while logical languages such as LTL are
difficult to use by non-experts. We present a catalog of 22 mission
specification patterns for mobile robots, together with tooling for
instantiating, composing, and compiling the patterns to create mission
specifications. The patterns provide solutions for recurrent specification
problems, each of which detailing the usage intent, known uses, relationships
to other patterns, and---most importantly---a template mission specification in
temporal logic. Our tooling produces specifications expressed in the LTL and
CTL temporal logics to be used by planners, simulators, or model checkers. The
patterns originate from 245 realistic textual mission requirements extracted
from the robotics literature, and they are evaluated upon a total of 441
real-world mission requirements and 1251 mission specifications. Five of these
reflect scenarios we defined with two well-known industrial partners developing
human-size robots. We validated our patterns' correctness with simulators and
two real robots
K(892)* resonance production in Au+Au and p+p collisions at sqrt[sNN]=200GeV
The short-lived K(892)* resonance provides an efficient tool to probe properties of the hot and dense medium produced in relativistic heavy-ion collisions. We report measurements of K* in sqrt[sNN]=200GeV Au+Au and p+p collisions reconstructed via its hadronic decay channels K(892)*0-->K pi and K(892)*±-->K0S pi ± using the STAR detector at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. The K*0 mass has been studied as a function of pT in minimum bias p+p and central Au+Au collisions. The K*pT spectra for minimum bias p+p interactions and for Au+Au collisions in different centralities are presented. The K*/K yield ratios for all centralities in Au+Au collisions are found to be significantly lower than the ratio in minimum bias p+p collisions, indicating the importance of hadronic interactions between chemical and kinetic freeze-outs. A significant nonzero K*0 elliptic flow (v2) is observed in Au+Au collisions and is compared to the K0S and Lambda v2. The nuclear modification factor of K* at intermediate pT is similar to that of K0S but different from Lambda . This establishes a baryon-meson effect over a mass effect in the particle production at intermediate pT (2<pT <= 4GeV/c)
Centrality and pseudorapidity dependence of charged hadron production at intermediate pT in Au+Au collisions at sqrt[sNN ]=130 GeV
We present STAR measurements of charged hadron production as a function of centrality in Au+Au collisions at sqrt[sNN ]=130 GeV . The measurements cover a phase space region of 0.2 pcutT , and studied the results in the framework of participant and binary scaling. No clear evidence is observed for participant scaling of charged hadron yield in the measured pT region. The relative importance of hard scattering processes is investigated through binary scaling fraction of particle production
Production of e+ e- pairs accompanied by nuclear dissociation in ultraperipheral heavy-ion collisions
We present data on e+ e- pair production accompanied by nuclear breakup in ultraperipheral gold-gold collisions at a center of mass energy of 200 GeV per nucleon pair. The nuclear breakup requirement selects events at small impact parameters, where higher-order diagrams for pair production should be enhanced. We compare the data with two calculations: one based on the equivalent photon approximation, and the other using lowest-order quantum electrodynamics (QED). The data distributions agree with both calculations, except that the pair transverse momentum spectrum disagrees with the equivalent photon approach. We set limits on higher-order contributions to the cross section
Pseudorapidity asymmetry and centrality dependence of charged hadron spectra in d+Au collisions at sqrt[sNN ]=200 GeV
The pseudorapidity asymmetry and centrality dependence of charged hadron spectra in d+Au collisions at sqrt[sNN ]=200 GeV are presented. The charged particle density at midrapidity, its pseudorapidity asymmetry, and centrality dependence are reasonably reproduced by a multiphase transport model, by HIJING, and by the latest calculations in a saturation model. Ratios of transverse momentum spectra between backward and forward pseudorapidity are above unity for pT below 5 GeV/c . The ratio of central to peripheral spectra in d+Au collisions shows enhancement at 2< pT <6 GeV/c , with a larger effect at backward rapidity than forward rapidity. Our measurements are in qualitative agreement with gluon saturation and in contrast to calculations based on incoherent multiple partonic scatterings
Multistrange baryon production in Au-Au collisions at sqrt[sNN]=130 GeV
The transverse mass spectra and midrapidity yields for Xi s and Omega s are presented. For the 10% most central collisions, the Xi -bar+/h- ratio increases from the Super Proton Synchrotron to the Relativistic Heavy Ion Collider energies while the Xi -/h- stays approximately constant. A hydrodynamically inspired model fit to the Xi spectra, which assumes a thermalized source, seems to indicate that these multistrange particles experience a significant transverse flow effect, but are emitted when the system is hotter and the flow is smaller than values obtained from a combined fit to pi , K, p, and Lambda s
Rho 0 production and possible modification in Au+Au and p+p collisions at sqrt[sNN]=200 GeV
We report results on rho (770)0--> pi + pi - production at midrapidity in p+p and peripheral Au+Au collisions at sqrt[sNN]=200 GeV. This is the first direct measurement of rho (770)0--> pi + pi - in heavy-ion collisions. The measured rho 0 peak in the invariant mass distribution is shifted by ~40 MeV/c2 in minimum bias p+p interactions and ~70 MeV/c2 in peripheral Au+Au collisions. The rho 0 mass shift is dependent on transverse momentum and multiplicity. The modification of the rho 0 meson mass, width, and shape due to phase space and dynamical effects are discussed
Azimuthal anisotropy in Au+Au collisions at SNN=200GeV
The results from the STAR Collaboration on directed flow (v1), elliptic flow (v2), and the fourth harmonic (v4) in the anisotropic azimuthal distribution of particles from Au+Au collisions at sqrt[sNN]=200GeV are summarized and compared with results from other experiments and theoretical models. Results for identified particles are presented and fit with a blast-wave model. Different anisotropic flow analysis methods are compared and nonflow effects are extracted from the data. For v2, scaling with the number of constituent quarks and parton coalescence are discussed. For v4, scaling with v22 and quark coalescence are discussed
- …
