70 research outputs found

    Reconstruction of primary vertices at the ATLAS experiment in Run 1 proton–proton collisions at the LHC

    Get PDF
    This paper presents the method and performance of primary vertex reconstruction in proton–proton collision data recorded by the ATLAS experiment during Run 1 of the LHC. The studies presented focus on data taken during 2012 at a centre-of-mass energy of √s=8 TeV. The performance has been measured as a function of the number of interactions per bunch crossing over a wide range, from one to seventy. The measurement of the position and size of the luminous region and its use as a constraint to improve the primary vertex resolution are discussed. A longitudinal vertex position resolution of about 30μm is achieved for events with high multiplicity of reconstructed tracks. The transverse position resolution is better than 20μm and is dominated by the precision on the size of the luminous region. An analytical model is proposed to describe the primary vertex reconstruction efficiency as a function of the number of interactions per bunch crossing and of the longitudinal size of the luminous region. Agreement between the data and the predictions of this model is better than 3% up to seventy interactions per bunch crossing

    Multi-component based cross correlation beat detection in electrocardiogram analysis

    Get PDF
    BACKGROUND: The first stage in computerised processing of the electrocardiogram is beat detection. This involves identifying all cardiac cycles and locating the position of the beginning and end of each of the identifiable waveform components. The accuracy at which beat detection is performed has significant impact on the overall classification performance, hence efforts are still being made to improve this process. METHODS: A new beat detection approach is proposed based on the fundamentals of cross correlation and compared with two benchmarking approaches of non-syntactic and cross correlation beat detection. The new approach can be considered to be a multi-component based variant of traditional cross correlation where each of the individual inter-wave components are sought in isolation as opposed to being sought in one complete process. Each of three techniques were compared based on their performance in detecting the P wave, QRS complex and T wave in addition to onset and offset markers for 3000 cardiac cycles. RESULTS: Results indicated that the approach of multi-component based cross correlation exceeded the performance of the two benchmarking techniques by firstly correctly detecting more cardiac cycles and secondly provided the most accurate marker insertion in 7 out of the 8 categories tested. CONCLUSION: The main benefit of the multi-component based cross correlation algorithm is seen to be firstly its ability to successfully detect cardiac cycles and secondly the accurate insertion of the beat markers based on pre-defined values as opposed to performing individual gradient searches for wave onsets and offsets following fiducial point location

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Simple Questionnaires to Improve Pooling Strategies for SARS-CoV-2 Laboratory Testing

    Get PDF
    Background: Liberal PCR testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is key to contain the coronavirus disease 2019 (COVID-19) pandemic. Combined multi-sample testing in pools instead of single tests might enhance laboratory capacity and reduce costs, especially in low- and middle-income countries. Objective: The purpose of our study was to assess the value of a simple questionnaire to guide and further improve pooling strategies for SARS-CoV-2 laboratory testing. Methods: Pharyngeal swabs for SARS-CoV-2 testing were obtained from healthcare and police staff, hospital inpatients, and nursing home residents in the southwestern part of Germany. We designed a simple questionnaire, which included questions pertaining to a suggestive clinical symptomatology, recent travel history, and contact with confirmed cases to stratify an individual’s pre-test probability of having contracted COVID-19. The questionnaire was adapted repeatedly in face of the unfolding pandemic in response to the evolving epidemiology and observed clinical symptomatology. Based on the response patterns, samples were either tested individually or in multi-sample pools. We compared the pool positivity rate and the number of total PCR tests required to obtain individual results between this questionnaire-based pooling strategy and randomly assembled pools. Findings: Between March 11 and July 5, 2020, we processed 25,978 samples using random pooling (n = 6,012; 23.1%) or questionnaire-based pooling (n = 19,966; 76.9%). The overall prevalence of SARS-CoV-2 was 0.9% (n = 238). Pool positivity (14.6% vs. 1.2%) and individual SARS-CoV-2 prevalence (3.4% vs. 0.1%) were higher in the random pooling group than in the questionnaire group. The average number of PCR tests needed to obtain the individual result for one participant was 0.27 tests in the random pooling group, as compared to 0.09 in the questionnaire-based pooling group, leading to a laboratory capacity increase of 73% and 91%, respectively, as compared to single PCR testing. Conclusions: Strategies that combine pool testing with a questionnaire-based risk stratification can increase laboratory testing capacities for COVID-19 and might be important tools, particularly in resource-constrained settings

    Antimicrobial use in pediatric oncology and hematology in Germany and Austria, 2020/2021: a cross-sectional, multi-center point-prevalence study with a multi-step qualitative adjudication process

    Get PDF
    Background Due to the high risk of severe infection among pediatric hematology and oncology patients, antimicrobial use is particularly high. With our study, we quantitatively and qualitatively evaluated, based on institutional standards and national guidelines, antimicrobial usage by employing a point-prevalence survey with a multi-step, expert panel approach. We analyzed reasons for inappropriate antimicrobial usage. Methods This cross-sectional study was conducted at 30 pediatric hematology and oncology centers in 2020 and 2021. Centers affiliated to the German Society for Pediatric Oncology and Hematology were invited to join, and an existing institutional standard was a prerequisite to participate. We included hematologic/oncologic inpatients under 19 years old, who had a systemic antimicrobial treatment on the day of the point prevalence survey. In addition to a one-day, point-prevalence survey, external experts individually assessed the appropriateness of each therapy. This step was followed by an expert panel adjudication based upon the participating centers’ institutional standards, as well as upon national guidelines. We analyzed antimicrobial prevalence rate, along with the rate of appropriate, inappropriate, and indeterminate antimicrobial therapies with regard to institutional and national guidelines. We compared the results of academic and non-academic centers, and performed a multinomial logistic regression using center- and patient-related data to identify variables that predict inappropriate therapy. Findings At the time of the study, a total of 342 patients were hospitalized at 30 hospitals, of whom 320 were included for the calculation of the antimicrobial prevalence rate. The overall antimicrobial prevalence rate was 44.4% (142/320; range 11.1–78.6%) with a median antimicrobial prevalence rate per center of 44.5% (95% confidence interval [CI] 35.9–49.9). Antimicrobial prevalence rate was significantly higher (p < 0.001) at academic centers (median 50.0%; 95% CI 41.2–55.2) compared to non-academic centers (median 20.0%; 95% CI 11.0–32.4). After expert panel adjudication, 33.8% (48/142) of all therapies were labelled inappropriate based upon institutional standards, with a higher rate (47.9% [68/142]) when national guidelines were taken into consideration. The most frequent reasons for inappropriate therapy were incorrect dosage (26.2% [37/141]) and (de-)escalation/spectrum-related errors (20.6% [29/141]). Multinomial, logistic regression yielded the number of antimicrobial drugs (odds ratio, OR, 3.13, 95% CI 1.76–5.54, p < 0.001), the diagnosis febrile neutropenia (OR 0.18, 95% CI 0.06–0.51, p = 0.0015), and an existing pediatric antimicrobial stewardship program (OR 0.35, 95% CI 0.15–0.84, p = 0.019) as predictors of inappropriate therapy. Our analysis revealed no evidence of a difference between academic and non-academic centers regarding appropriate usage. Interpretation Our study revealed there to be high levels of antimicrobial usage at German and Austrian pediatric oncology and hematology centers with a significant higher number at academic centers. Incorrect dosing was shown to be the most frequent reason for inappropriate usage. Diagnosis of febrile neutropenia and antimicrobial stewardship programs were associated with a lower likelihood of inappropriate therapy. These findings suggest the importance of febrile neutropenia guidelines and guidelines compliance, as well as the need for regular antibiotic stewardship counselling at pediatric oncology and hematology centers. Funding European Society of Clinical Microbiology and Infectious Diseases, Deutsche Gesellschaft für Pädiatrische Infektiologie, Deutsche Gesellschaft für Krankenhaushygiene, Stiftung Kreissparkasse Saarbrücken

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s=\sqrt{s}= 13 pppp collisions with the ATLAS detector

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF
    This paper reviews and extends searches for the direct pair production of the scalar supersymmetric partners of the top and bottom quarks in proton-proton collisions collected by the ATLAS collaboration during the LHC Run 1. Most of the analyses use 20 fb1^{-1} of collisions at a centre-of-mass energy of s\sqrt{s} = 8 TeV, although in some case an additional 4.7 fb1^{-1} of collision data at s\sqrt{s} = 7 TeV are used. New analyses are introduced to improve the sensitivity to specific regions of the model parameter space. Since no evidence of third-generation squarks is found, exclusion limits are derived by combining several analyses and are presented in both a simplified model framework, assuming simple decay chains, as well as within the context of more elaborate phenomenological supersymmetric models
    corecore