10 research outputs found
Differences in Compositions of Gut Bacterial Populations and Bacteriophages in 5-11 Year-Olds Born Preterm Compared to Full Term
Preterm infants are exposed to major perinatal, post-natal, and early infancy events that could impact on the gut microbiome. These events include infection, steroid and antibiotic exposure, parenteral nutrition, necrotizing enterocolitis, and stress. Studies have shown that there are differences in the gut microbiome during the early months of life in preterm infants. We hypothesized that differences in the gut microbial composition and metabolites in children born very preterm persist into mid-childhood. Participants were healthy prepubertal children aged 5-11 years who were born very preterm (≤32 weeks of gestation; n = 51) or at term (37-41 weeks; n = 50). We recorded the gestational age, birth weight, mode of feeding, mode of birth, age, sex, and the current height and weight of our cohort. We performed a multi'omics [i.e., 16S rRNA amplicon and shotgun metagenomic sequencing, SPME-GCMS (solid-phase microextraction followed by gas chromatography-mass spectrometry)] analysis to investigate the structure and function of the fecal microbiome (as a proxy of the gut microbiota) in our cross-sectional cohort. Children born very preterm were younger (7.8 vs. 8.3 years; p = 0.034), shorter [height-standard deviation score (SDS) 0.31 vs. 0.92; p = 0.0006) and leaner [BMI (body mass index) SDS -0.20 vs. 0.29; p < 0.0001] than the term group. Children born very preterm had higher fecal calprotectin levels, decreased fecal phage richness, lower plasma arginine, lower fecal branched-chain amino acids and higher fecal volatile (i.e., 3-methyl-butanoic acid, butyrolactone, butanoic acid and pentanoic acid) profiles. The bacterial microbiomes did not differ between preterm and term groups. We speculate that the observed very preterm-specific changes were established in early infancy and may impact on the capacity of the very preterm children to respond to environmental changes.fals
Fat-Soluble Vitamers: Parent-Child Concordance and Population Epidemiology in the Longitudinal Study of Australian Children
Fat-soluble vitamers (FSV) are a class of diverse organic substances important in a wide range of biological processes, including immune function, vision, bone health, and coagulation. Profiling FSV in parents and children enables insights into gene-environment contributions to their circulating levels, but no studies have reported on the population epidemiology of FSV in these groups as of yet. In this study, we report distributions of FSV, their parent-child concordance and variation by key characteristics for 2490 children (aged 11-12 years) and adults (aged 28-71 years) in the Child Health CheckPoint of the Longitudinal Study of Australian Children. Ten A, D, E and K vitamers were quantified using a novel automated LC-MS/MS method. All three K vitamers (i.e., K1, MK-4, MK-7) and 1-α-25(OH)2D3 were below the instrument detection limit and were removed from the present analysis. We observed a strong vitamer-specific parent-child concordance for the six quantifiable A, D and E FSVs. FSV concentrations all varied by age, BMI, and sex. We provide the first cross-sectional population values for multiple FSV. Future studies could examine relative genetic vs. environmental determinants of FSV, how FSV values change longitudinally, and how they contribute to future health and disease
Population epidemiology and concordance for plasma amino acids and precursors in 11-12-year-old children and their parents
Amino acid (AA) concentrations are influenced by both exogenous (e.g. diet, lifestyle) and endogenous factors (e.g. genetic, transcriptomic, epigenetic, and metabolomic). Fasting plasma AA profiles in adulthood are predictive of diabetes risk over periods of up to 12 years. Data on AA profiles in cross-generational cohorts, including individuals from shared gene-environment settings are scarce, but would allow the identification of the contribution of heritable and environmental factors characterising the levels of circulating AAs. This study aimed to investigate parent-child (familial dyad) concordance, absolute differences between generations- (children versus adults), age- (in adults: 28-71 years), and sex-dependent differences in plasma AA concentrations. Plasma AA concentrations were measured by UHPLC/MS-MS in 1166 children [mean (SD) age 11 (0.5) years, 51% female] and 1324 of their parents [44 (5.1) years, 87% female]. AA concentrations were variably concordant between parents and their children (5-41% of variability explained). Most AA concentrations were higher in adults than children, except for the non-essential AAs arginine, aspartic acid, glutamine, hydroxy-proline, proline, and serine. Male adults and children typically had higher AA concentrations than females. The exceptions were alanine, glutamine, glycine, hydroxy-proline, serine, and threonine in girls; and glycine and serine in women. Age, sex, and shared familial factors are important determinants of plasma AA concentrations
Trimethylamine N-oxide (TMAO) Is not Associated with Cardiometabolic Phenotypes and Inflammatory Markers in Children and Adults
BACKGROUND: Trimethylamine N-oxide (TMAO) is a diet- and microbiome-derived metabolite and a proposed biomarker of adverse cardiometabolic outcomes. TMAO studies have mainly been conducted in individuals with cardiometabolic disease, and studies in population-derived samples are limited. OBJECTIVE: We aimed to investigate the associations between plasma TMAO concentrations and its precursors [carnitine, choline, betaine, and dimethylglycine (DMG)] with metabolic syndrome (MetS) scores, preclinical cardiovascular phenotypes, and inflammatory biomarkers (i.e. high-sensitivity C-reactive protein and serum glycoprotein acetyls) in a population-derived cohort of children and their parents. METHODS: The concentrations of TMAO and its precursors were quantified using UHPLC coupled with tandem MS (UHPLC/MS-MS) in 1166 children (mean age 11 y ± 0.5 y, 51% female) and 1324 adults (44 y ± 5.1 y, 87% female) participating in The Growing Up in Australia's Child Health CheckPoint Study. We developed multivariable fractional polynomial models to analyze associations between TMAO, its precursors, MetS (adjusted for sex and age), and cardiovascular phenotypes (adjusted for sex, age, BMI, household income, and the urinary albumin to creatinine ratio). Pearson's correlations were computed to identify associations between TMAO, its precursors, and inflammatory biomarkers. RESULTS: The concentrations of TMAO precursors, but not TMAO itself, were associated with MetS, cardiovascular phenotypes, and inflammatory biomarkers in children and adults. CONCLUSIONS: TMAO precursors, but not TMAO itself, were associated with adverse cardiometabolic and inflammatory phenotypes in children and adults. TMAO precursor concentrations may better reflect cardiovascular health and inflammatory status within the wider population. Replication in other population settings and mechanistic studies are warranted
Plasma Trimethylamine N-Oxide and Its Precursors: Population Epidemiology, Parent-Child Concordance, and Associations with Reported Dietary Intake in 11-to 12-Year-Old Children and Their Parents
Background: Trimethylamine N-oxide (TMAO) is a microbiome- and diet-derived metabolite implicated in adverse cardiovascular outcomes. To date, studies of plasma TMAO concentrations have largely focused on individuals with metabolic disease. As such, data on TMAO concentrations in population settings and parent-child dyads are lacking. Objectives: This study aimed to investigate parent-child concordance, age, and sex effects on plasma concentrations of TMAO and its precursors [l-carnitine, choline, betaine, and dimethylglycine (DMG)]. Associations between concentrations of TMAO and its precursors and self-reported dietary intakes of animal protein (i.e., red meat, meat products, chicken, fish, milk products, and cheese) and fast-food meals were also investigated. Methods: A total of 1166 children (mean ± SD age: 11 ± 0.5 y, 51% female) and 1324 parents (mean ± SD age: 44 ± 5.1 y, 87% female) had a biomedical assessment as part of Growing Up in Australia's Child Health Checkpoint. Plasma TMAO and precursor concentrations were quantified using ultra-high-pressure LC coupled with tandem MS. Results: Familial dyads significantly contributed to plasma TMAO and precursor concentrations (P < 0.0001), explaining 37% of variance for TMAO concentrations. Least-square mean ± SE plasma TMAO was lower in children (0.79 ± 0.02 µM on the log-scale) than in adults (1.22 ± 0.02 µM). By contrast, children's betaine (40.30 ± 0.34 µM) and DMG concentrations (1.02 ± 0.01 µM on the log-scale) were higher than adults' betaine (37.50 ± 0.32 µM) and DMG concentrations (0.80 ± 0.01 µM) (P < 0.0001). Mean values of all metabolites, except adult TMAO, were higher in males than in females (P < 0.001). Greater reported intake of red meat and fish was associated with higher TMAO concentrations in both children [estimates (95% CIs) for red meat: 0.06 (0.01, 0.10); fish: 0.11 (0.06, 0.17)] and adults [red meat: 0.13 (0.08, 0.17); meat products: 0.07 (0.03, 0.12); and fish: 0.09 (0.04, 0.14)]. Conclusions: Age, sex, and shared family factors, including diet, contribute to variation in plasma concentrations of TMAO and its precursors
Longitudinal effects of prenatal exposure to plastic-derived chemicals and their metabolites on asthma and lung function from childhood into adulthood
Background and Objective: Environmental exposure to phthalates and bisphenol A (BPA), chemicals used in the production of plastics, may increase risk for asthma and allergies. However, little is known about the long-term effects of early life exposure to these compounds. We investigated if prenatal exposure to these compounds was associated with asthma, allergy and lung function outcomes from early childhood into adulthood in a cohort study. Methods: Maternal serum samples collected from 846 pregnant women in the Raine Study were assayed for BPA and phthalate metabolites. The children of these women were followed up at 5, 13 and 22 years where spirometry and respiratory questionnaires were conducted to determine asthma and allergy status. Lung function trajectories were derived from longitudinal spirometry measurements. Multinomial logistic regression and weighted quantile sum regression was used to test associations of individual and chemical mixtures with asthma phenotypes and lung function trajectories. Results: Effects of prenatal BPA and phthalates on asthma phenotypes were seen in male offspring, where BPA was associated with increased risk for persistent asthma, while mono-iso-butyl phthalate and mono-iso-decyl phthalate was associated with increased risk for adult asthma. Prenatal BPA had no effect on lung function trajectories, but prenatal phthalate exposure was associated with improved lung function. Conclusion: Prenatal BPA exposure was associated with increased likelihood of persistent asthma in males, while prenatal phthalate exposure was associated with increased likelihood of adult asthma in males. Results suggest that prenatal exposure to prenatal BPA and phthalates affect asthma risk, particularly in males, however lung function was not adversely affected
Prenatal Exposure to Environmental Phenols: Concentrations in Amniotic Fluid and Variability in Urinary Concentrations during Pregnancy
Background: Maternal urinary biomarkers are often used to assess fetal exposure to phenols and their precursors. Their effectiveness as a measure of exposure in epidemiological studies depends on their variability during pregnancy and their ability to accurately predict fetal exposure. Objectives: We assessed the relationship between urinary and amniotic fluid concentrations of nine environmental phenols, and the reproducibility of urinary concentrations, among pregnant women. Methods: Seventy-one women referred for amniocentesis were included. Maternal urine was collected at the time of the amniocentesis appointment and on two subsequent occasions. Urine and amniotic fluid were analyzed for 2,4- and 2,5-dichlorophenols, bisphenol A, benzophenone-3, triclosan, and methyl-, ethyl-, propyl-, and butylparabens using online solid phase extraction–high performance liquid chromatography–isotope dilution tandem mass spectrometry. Results: Only benzophenone-3 and propylparaben were detectable in more than half of the amniotic fluid samples; for these phenols, concentrations in amniotic fluid and maternal urine collected on the same day were positively correlated (ρ = 0.53 and 0.32, respectively). Other phenols were detected infrequently in amniotic fluid (e.g., bisphenol A was detected in only two samples). The intraclass correlation coefficients (ICCs) of urinary concentrations in samples from individual women ranged from 0.48 and 0.62 for all phenols except bisphenol A (ICC = 0.11). Conclusion: Amniotic fluid detection frequencies for most phenols were low. The reproducibility of urine measures was poor for bisphenol A, but good for the other phenols. Although a single sample may provide a reasonable estimate of exposure for some phenols, collecting multiple urine samples during pregnancy is an option to reduce exposure measurement error in studies regarding the effects of phenol prenatal exposure on health. Citation: Philippat C, Wolff MS, Calafat AM, Ye X, Bausell R, Meadows M, Stone J, Slama R, Engel SM. 2013. Prenatal exposure to environmental phenols: concentrations in amniotic fluid and variability in urinary concentrations during pregnancy. Environ Health Perspect 121:1225–1231; http://dx.doi.org/10.1289/ehp.120633
