59 research outputs found
Efficacy and safety of pharmacological treatments for Lyme neuroborreliosis in children: a systematic review
On relevance and linguistic strength in TV commercials : the way they slip and slide to make their angled point
HVDC transformer core resonance calculation
Transformers emit a characteristic humming noise due to magnetostriction which is the continuous change in dimensions during magnetization. The noise is amplified if the induced frequencies match the core’s natural frequencies, consequently avoiding geometries that create resonance is critical in order to fulfill customer sound level requirements. In this thesis, a high voltage direct current transformer core with two main limbs and two return limbs is studied. Using finite element analysis (FEA), the core can be modeled and analyzed in a computer environment. The main contributors of noise are the first bending and longitudinal resonance modes. Data for how these modes change with geometric alterations is collected and stored through parametric studies. An analytical expression is then constructed through Rayleigh’s energy method with added coefficients that can be correlated to FEA datasets achieving a verified model via data-fitting. A satisfactory model is created for both resonance modes.Transformatorer avger ett karaktäristiskt surrande ljud. Ljudet uppkommer på grund av magnetostriktion vilket är förändringar i geometri som uppkommer då kärnan kontinuerligt magnetiseras. Ljudet förstärks om induktionsfrekvenserna matchar kärnans naturliga frekvenser, så att undvika kärngeometrier som skapar resonans är viktigt för att klara ljudnivåkrav som kunden har. I denna studie betraktas resonansfenomenet i en högspänningstransformator för likström (HVDC) med två lindade ben och två sidoben. Med avstamp i en finita elementanalys (FEA) kan kärnan modelleras och analyseras i en datormiljö. Data för hur resonansmoderna som bidrar mest till ljud förändras med förändringar av geometriska parametrar samlas genom parametriska studier. I detta fall analyseras de första böj- och longitudinella resonansmoderna. Ett analytiskt uttryck skapas sedan med hjälp av Rayleigh’s energimetod där coefficienter anpassas efter FEA-datan. Detta leder slutligen till en verifierad modell som fungerar väl för uppskattning av de båda relevanta resonansmoderna
Clinical Features in Poisonings by Tricyclic Antidepressants with Special Reference to the ECG
HVDC transformer core resonance calculation
Transformers emit a characteristic humming noise due to magnetostriction which is the continuous change in dimensions during magnetization. The noise is amplified if the induced frequencies match the core’s natural frequencies, consequently avoiding geometries that create resonance is critical in order to fulfill customer sound level requirements. In this thesis, a high voltage direct current transformer core with two main limbs and two return limbs is studied. Using finite element analysis (FEA), the core can be modeled and analyzed in a computer environment. The main contributors of noise are the first bending and longitudinal resonance modes. Data for how these modes change with geometric alterations is collected and stored through parametric studies. An analytical expression is then constructed through Rayleigh’s energy method with added coefficients that can be correlated to FEA datasets achieving a verified model via data-fitting. A satisfactory model is created for both resonance modes.Transformatorer avger ett karaktäristiskt surrande ljud. Ljudet uppkommer på grund av magnetostriktion vilket är förändringar i geometri som uppkommer då kärnan kontinuerligt magnetiseras. Ljudet förstärks om induktionsfrekvenserna matchar kärnans naturliga frekvenser, så att undvika kärngeometrier som skapar resonans är viktigt för att klara ljudnivåkrav som kunden har. I denna studie betraktas resonansfenomenet i en högspänningstransformator för likström (HVDC) med två lindade ben och två sidoben. Med avstamp i en finita elementanalys (FEA) kan kärnan modelleras och analyseras i en datormiljö. Data för hur resonansmoderna som bidrar mest till ljud förändras med förändringar av geometriska parametrar samlas genom parametriska studier. I detta fall analyseras de första böj- och longitudinella resonansmoderna. Ett analytiskt uttryck skapas sedan med hjälp av Rayleigh’s energimetod där coefficienter anpassas efter FEA-datan. Detta leder slutligen till en verifierad modell som fungerar väl för uppskattning av de båda relevanta resonansmoderna
Maglev i vinterklimat
As of year 2020, maglev train systems are not in service in areas with harsh winter climate. Compared to conventional railway, the technology is relatively new and untested in conditions of low temperatures, icing and snow. If maglev is to be deployed in areas of cold climate, the effects on the technology under these conditions must be investigated. Low temperature pose problems for materials in general as material properties change. One example is dampers, whose damping constants can change drastically with temperature. Icing on the train vehicles cause increased turbulence and drag and chunks of ice can come loose of the vehicle and cause great damage to both the rolling stock and the guideway around it. These issues are especially problematic at the high speeds that maglev trains can reach, as aerodynamic forces often increase faster with greater velocities. Atomized snow in the air caused by the train’s turbulence can pile up on the bogies and around sensitive areas like ventilation inlets. It is found that many solutions that are used for railway trains can be applied to the maglev technology as well. However, there are some unique challenges for maglev trains. High speed forces, advanced guideway switch management, and frost wedging of the guideways are a few examples. Japan is the leading country in the maglev technology as of 2020, and they have some suggested solutions for cold climate issues for their superconductive maglev. For example, much of the guideway is lead through tunnels, as to not expose the vehicle and guideway to snow. In outside portions, water sprinkler systems and protective hoods are utilized to keep the guideway clear of snow.År 2020 finns ännu inga maglev tåg i regioner med tufft vinterklimat. Jämfört med konventionell järnväg så är tekniken relativt otestad mot snö, is och låga temperaturer. Om maglev skall användas i dessa regioner måste effekterna av ett kallt klimat på tekniken undersökas. Låga temperaturer skapar generellt problematiska förändringar i materialegenskaper. Ett exempel är dämpare, vars dämpningskonstanter kan förändras drastiskt då komponenten utsätts för varierande temperaturer. Is på tågets yta kan leda till ökat luftmostsånd och turbulens runt vagnarna. Samma isklumpar kan falla av tåget i höga hastigheter vilket kan leda till stor skada på både vagnar och tågbana. Atomiserad snö runt tåget kan leda till ackumulering av snö, framförallt under tågvagnarna, och snöpartiklarna kan ta sig in i känsliga system som ventilationsutlopp. Många lösningar som används för konventionell järnväg är också applicerbara för maglev. Det finns dock ett antal unika utmaningar för tekniken, som främst har med de höga hastigheterna och den unika typen av tågbana att göra. Luftmotstånd och turbulens ökar matematiskt fortare än hastigheten, och höga hastigheter medför även större krafter. Det leder till ökad vikt av att hålla tågen isfria. De tågbanor som maglev använder är ofta byggda av betong som är känsligt för både frostsprängning och erosion. Även där finns unika utmaningar. Japan är ledande inom maglev teknologin och har tagit fram en del lösningar på denna typ av vinterproblematik för sina system. De leder bland annat sina tåg genom tunnlar eller höjer upp dem på viadukter för att undvika snöansamlingar. För de delar av spåret där tågen måste åka utomhus används vindskydd mot snö och vind, samt vattenspridare med varmt vatten för att smälta den snö som ändå lyckas ackumuleras.
HEMODYNAMIC EFFECTS OF NOREPINEPHRINE IN SEVERE HYPNOTIC DRUG POISONING WITH ARTERIAL HYPOTENSION
- …
