526 research outputs found
A fast method for the measurement of long spin-lattice relaxation times by Single Scan Inversion Recovery experiment
A new method of measuring long spin-lattice relaxation times () is
proposed. Being a single scan technique, the method is at least one order of
magnitude faster than the conventional technique. This method (Single-Scan or
Slice Selected Inversion Recovery or SSIR) relies on the slice selection
technique. The method is experimentally verified and compared with the time
taken by the conventional measurement. Furthermore, it is shown that the
conventional Inversion Recovery (IR) method which suffers from effects of r.f.
inhomogeneity can also be improved by measuring the magnetization of only a
central slice.Comment: 12 pages, 5 figures. Chemical Physics Letters, in pres
Magic angle spinning (MAS) NMR linewidths in the presence of solid-state dynamics
In solid-state NMR, the magic angle spinning (MAS) technique fails to suppress anisotropic spin interactions fully if reorientational dynamics are present, resulting in a decay of the rotational-echo train in the time-domain signal. We show that a simple analytical model can be used to quantify this linebroadening effect as a function of the MAS frequency, reorientational rate constant, and magnitude of the inhomogeneous anisotropic broadening. We compare this model with other theoretical approaches and with exact computer simulations, and show how it may be used to estimate rate constants from experimental NMR data
How does blood regulate cerebral temperatures during hypothermia?
AbstractMacro-modeling of cerebral blood flow can help determine the impact of thermal intervention during instances of head trauma to mitigate tissue damage. This work presents a bioheat model using a 3D fluid-porous domain coupled with intersecting 1D arterial and venous vessel trees. This combined vascular porous (VaPor) model resolves both cerebral blood flow and energy equations, including heat generated by metabolism, using vasculature extracted from MRI data and is extended using a tree generation algorithm. Counter-current flows are expected to increase thermal transfer within the brain and are enforced using either the vascular structure or flow reversal, represented by a flow reversal constant, C
R
. These methods exhibit larger average brain cooling (from 0.56 °C ± <0.01 °C to 0.58 °C ± <0.01 °C) compared with previous models (0.39 °C) when scalp temperature is reduced. An greater reduction in core brain temperature is observed (from 0.29 °C ± <0.01 °C to 0.45 °C ± <0.01 °C) compared to previous models (0.11 °C) due to the inclusion of counter-current cooling effects. The VaPor model also predicts that a hypothermic average temperature (<36 °C) can be reached in core regions of neonatal models using scalp cooling alone.</jats:p
Second-order quadrupolar shifts as an NMR probe of fast molecular-scale dynamics in solids
Molecular-scale dynamics on the nanosecond timescale or faster can have a measurable influence on isotropic NMR frequencies of quadrupolar nuclei. Although previously studied in solution, where it is usually referred to as the ‘dynamic shift’, this effect is less well known in solids. Here we demonstrate that multiple-quantum NMR measurements of isotropic quadrupolar shifts are a simple way to probe nanosecond timescale motions in solids. We measure the <sup>11</sup>B (spin I = 3/2) shifts of the resolved boron sites in ortho-carborane as a function of temperature and interpret the results in terms of the known rapid tumbling dynamics
White matter hyperintensity reduction and outcomes after minor stroke
Objective: To assess factors associated with white matter hyperintensity (WMH) change in a large cohort after observing obvious WMH shrinkage 1 year after minor stroke in several participants in a longitudinal study.
Methods: We recruited participants with minor ischemic stroke and performed clinical assessments and brain MRI. At 1 year, we assessed recurrent cerebrovascular events and dependency and repeated the MRI. We assessed change in WMH volume from baseline to 1 year (normalized to percent intracranial volume [ICV]) and associations with baseline variables, clinical outcomes, and imaging parameters using multivariable analysis of covariance, model of changes, and multinomial logistic regression.
Results: Among 190 participants (mean age 65.3 years, range 34.3–96.9 years, 112 [59%] male), WMH decreased in 71 participants by 1 year. At baseline, participants whose WMH decreased had similar WMH volumes but higher blood pressure (p = 0.0064) compared with participants whose WMH increased. At 1 year, participants with WMH decrease (expressed as percent ICV) had larger reductions in blood pressure (β = 0.0053, 95% confidence interval [CI] 0.00099–0.0097 fewer WMH per 1–mm Hg decrease, p = 0.017) and in mean diffusivity in normal-appearing white matter (β = 0.075, 95% CI 0.0025–0.15 fewer WMH per 1-unit mean diffusivity decrease, p = 0.043) than participants with WMH increase; those with WMH increase experienced more recurrent cerebrovascular events (32%, vs 16% with WMH decrease, β = 0.27, 95% CI 0.047–0.50 more WMH per event, p = 0.018).
Conclusions: Some WMH may regress after minor stroke, with potentially better clinical and brain tissue outcomes. The role of risk factor control requires verification. Interstitial fluid alterations may account for some WMH reversibility, offering potential intervention targets
Proton spectroscopic imaging of brain metabolites in basal ganglia of healthy older adults
Object: We sought to measure brain metabolite levels in healthy older people.
Materials and methods: Spectroscopic imaging at the level of the basal ganglia was applied in 40 participants aged 73–74 years. Levels of the metabolites N-acetyl aspartate (NAA), choline, and creatine were determined in "institutional units" (IU) corrected for T1 and T2 relaxation effects. Structural imaging enabled determination of grey matter (GM), white matter (WM), and cerebrospinal fluid content. ANOVA analysis was carried out for voxels satisfying quality criteria.
Results: Creatine levels were greater in GM than WM (57 vs. 44 IU, p < 0.001), whereas choline and NAA levels were greater in WM than GM [13 vs. 10 IU (p < 0.001) and 76 versus 70 IU (p = 0.03), respectively]. The ratio of NAA/cre was greater in WM than GM (2.1 vs. 1.4, p = 0.001) as was that of cho/cre (0.32 vs. 0.16, p < 0.001). A low voxel yield was due to brain atrophy and the difficulties of shimming over an extended region of brain.
Conclusion: This study addresses the current lack of information on brain metabolite levels in older adults. The normal features of ageing result in a substantial loss of reliable voxels and should be taken into account when planning studies. Improvements in shimming are also required before the methods can be applied more widely
Corrigendum:Cerebrovascular reactivity measurement using magnetic resonance imaging: A systematic review
Associations Between White Matter Hyperintensity Burden, Cerebral Blood Flow and Transit Time in Small Vessel Disease: An Updated Meta-Analysis
- …
