2,768 research outputs found

    Controlled Experimentation in Naturalistic Mobile Settings

    Full text link
    Performing controlled user experiments on small devices in naturalistic mobile settings has always proved to be a difficult undertaking for many Human Factors researchers. Difficulties exist, not least, because mimicking natural small device usage suffers from a lack of unobtrusive data to guide experimental design, and then validate that the experiment is proceeding naturally.Here we use observational data to derive a set of protocols and a simple checklist of validations which can be built into the design of any controlled experiment focused on the user interface of a small device. These, have been used within a series of experimental designs to measure the utility and application of experimental software. The key-point is the validation checks -- based on the observed behaviour of 400 mobile users -- to ratify that a controlled experiment is being perceived as natural by the user. While the design of the experimental route which the user follows is a major factor in the experimental setup, without check validations based on unobtrusive observed data there can be no certainty that an experiment designed to be natural is actually progressing as the design implies.Comment: 12 pages, 3 table

    Random Feature-based Online Multi-kernel Learning in Environments with Unknown Dynamics

    Get PDF
    Kernel-based methods exhibit well-documented performance in various nonlinear learning tasks. Most of them rely on a preselected kernel, whose prudent choice presumes task-specific prior information. Especially when the latter is not available, multi-kernel learning has gained popularity thanks to its flexibility in choosing kernels from a prescribed kernel dictionary. Leveraging the random feature approximation and its recent orthogonality-promoting variant, the present contribution develops a scalable multi-kernel learning scheme (termed Raker) to obtain the sought nonlinear learning function `on the fly,' first for static environments. To further boost performance in dynamic environments, an adaptive multi-kernel learning scheme (termed AdaRaker) is developed. AdaRaker accounts not only for data-driven learning of kernel combination, but also for the unknown dynamics. Performance is analyzed in terms of both static and dynamic regrets. AdaRaker is uniquely capable of tracking nonlinear learning functions in environments with unknown dynamics, and with with analytic performance guarantees. Tests with synthetic and real datasets are carried out to showcase the effectiveness of the novel algorithms.Comment: 36 page

    Energy-Efficient Transmission Schedule for Delay-Limited Bursty Data Arrivals under Non-Ideal Circuit Power Consumption

    Full text link
    This paper develops a novel approach to obtaining energy-efficient transmission schedules for delay-limited bursty data arrivals under non-ideal circuit power consumption. Assuming a-prior knowledge of packet arrivals, deadlines and channel realizations, we show that the problem can be formulated as a convex program. For both time-invariant and time-varying fading channels, it is revealed that the optimal transmission between any two consecutive channel or data state changing instants, termed epoch, can only take one of the three strategies: (i) no transmission, (ii) transmission with an energy-efficiency (EE) maximizing rate over part of the epoch, or (iii) transmission with a rate greater than the EE-maximizing rate over the whole epoch. Based on this specific structure, efficient algorithms are then developed to find the optimal policies that minimize the total energy consumption with a low computational complexity. The proposed approach can provide the optimal benchmarks for practical schemes designed for transmissions of delay-limited data arrivals, and can be employed to develop efficient online scheduling schemes which require only causal knowledge of data arrivals and deadline requirements.Comment: 30 pages, 7 figure

    An Improved Algorithm for Incremental DFS Tree in Undirected Graphs

    Get PDF
    Depth first search (DFS) tree is one of the most well-known data structures for designing efficient graph algorithms. Given an undirected graph G=(V,E)G=(V,E) with nn vertices and mm edges, the textbook algorithm takes O(n+m)O(n+m) time to construct a DFS tree. In this paper, we study the problem of maintaining a DFS tree when the graph is undergoing incremental updates. Formally, we show: Given an arbitrary online sequence of edge or vertex insertions, there is an algorithm that reports a DFS tree in O(n)O(n) worst case time per operation, and requires O(min{mlogn,n2})O\left(\min\{m \log n, n^2\}\right) preprocessing time. Our result improves the previous O(nlog3n)O(n \log^3 n) worst case update time algorithm by Baswana et al. and the O(nlogn)O(n \log n) time by Nakamura and Sadakane, and matches the trivial Ω(n)\Omega(n) lower bound when it is required to explicitly output a DFS tree. Our result builds on the framework introduced in the breakthrough work by Baswana et al., together with a novel use of a tree-partition lemma by Duan and Zhan, and the celebrated fractional cascading technique by Chazelle and Guibas

    RSA: Byzantine-Robust Stochastic Aggregation Methods for Distributed Learning from Heterogeneous Datasets

    Full text link
    In this paper, we propose a class of robust stochastic subgradient methods for distributed learning from heterogeneous datasets at presence of an unknown number of Byzantine workers. The Byzantine workers, during the learning process, may send arbitrary incorrect messages to the master due to data corruptions, communication failures or malicious attacks, and consequently bias the learned model. The key to the proposed methods is a regularization term incorporated with the objective function so as to robustify the learning task and mitigate the negative effects of Byzantine attacks. The resultant subgradient-based algorithms are termed Byzantine-Robust Stochastic Aggregation methods, justifying our acronym RSA used henceforth. In contrast to most of the existing algorithms, RSA does not rely on the assumption that the data are independent and identically distributed (i.i.d.) on the workers, and hence fits for a wider class of applications. Theoretically, we show that: i) RSA converges to a near-optimal solution with the learning error dependent on the number of Byzantine workers; ii) the convergence rate of RSA under Byzantine attacks is the same as that of the stochastic gradient descent method, which is free of Byzantine attacks. Numerically, experiments on real dataset corroborate the competitive performance of RSA and a complexity reduction compared to the state-of-the-art alternatives.Comment: To appear in AAAI 201
    corecore