66 research outputs found

    Dot1 binding induces chromatin rearrangements by histone methylation-dependent and -independent mechanisms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Methylation of histone H3 lysine 79 (H3K79) by Dot1 is highly conserved among species and has been associated with both gene repression and activation. To eliminate indirect effects and examine the direct consequences of Dot1 binding and H3K79 methylation, we investigated the effects of targeting Dot1 to different positions in the yeast genome.</p> <p>Results</p> <p>Targeting Dot1 did not activate transcription at a euchromatic locus. However, chromatin-bound Dot1 derepressed heterochromatin-mediated gene silencing over a considerable distance. Unexpectedly, Dot1-mediated derepression was established by both a H3K79 methylation-dependent and a methylation-independent mechanism; the latter required the histone acetyltransferase Gcn5. By monitoring the localization of a fluorescently tagged telomere in living cells, we found that the targeting of Dot1, but not its methylation activity, led to the release of a telomere from the repressive environment at the nuclear periphery. This probably contributes to the activity-independent derepression effect of Dot1.</p> <p>Conclusions</p> <p>Targeting of Dot1 promoted gene expression by antagonizing gene repression through both histone methylation and chromatin relocalization. Our findings show that binding of Dot1 to chromatin can positively affect local gene expression by chromatin rearrangements over a considerable distance.</p

    A key role for chd1 in histone h3 dynamics at the 3\u27 ends of long genes in yeast

    Get PDF
    Chd proteins are ATP-dependent chromatin remodeling enzymes implicated in biological functions from transcriptional elongation to control of pluripotency. Previous studies of the Chd1 subclass of these proteins have implicated them in diverse roles in gene expression including functions during initiation, elongation, and termination. Furthermore, some evidence has suggested a role for Chd1 in replication-independent histone exchange or assembly. Here, we examine roles of Chd1 in replication-independent dynamics of histone H3 in both Drosophila and yeast. We find evidence of a role for Chd1 in H3 dynamics in both organisms. Using genome-wide ChIP-on-chip analysis, we find that Chd1 influences histone turnover at the 5\u27 and 3\u27 ends of genes, accelerating H3 replacement at the 5\u27 ends of genes while protecting the 3\u27 ends of genes from excessive H3 turnover. Although consistent with a direct role for Chd1 in exchange, these results may indicate that Chd1 stabilizes nucleosomes perturbed by transcription. Curiously, we observe a strong effect of gene length on Chd1\u27s effects on H3 turnover. Finally, we show that Chd1 also affects histone modification patterns over genes, likely as a consequence of its effects on histone replacement. Taken together, our results emphasize a role for Chd1 in histone replacement in both budding yeast and Drosophila melanogaster, and surprisingly they show that the major effects of Chd1 on turnover occur at the 3\u27 ends of genes

    The histone methyltransferase SETD2 negatively regulates cell size

    Get PDF
    Cell size varies between cell types but is tightly regulated by cell intrinsic and extrinsic mechanisms. Cell size control is important for cell function, and changes in cell size are frequently observed in cancer. Here, we uncover a role for SETD2 in regulating cell size. SETD2 is a lysine methyltransferase and a tumor suppressor protein involved in transcription, RNA processing and DNA repair. At the molecular level, SETD2 is best known for associating with RNA polymerase II through its Set2-Rbp1 interacting (SRI) domain and methylating histone H3 on lysine 36 (H3K36) during transcription. Using multiple independent perturbation strategies, we identify SETD2 as a negative regulator of global protein synthesis rates and cell size. We provide evidence that overexpression of the H3K36 demethylase KDM4A or the oncohistone H3.3K36M also increase cell size. In addition, ectopic overexpression of a decoy SRI domain increased cell size, suggesting that the relevant substrate is engaged by SETD2 via its SRI domain. These data add a central role of SETD2 in regulating cellular physiology and warrant further studies on separating the different functions of SETD2 in cancer development

    A Barcode Screen for Epigenetic Regulators Reveals a Role for the NuB4/HAT-B Histone Acetyltransferase Complex in Histone Turnover

    Get PDF
    Dynamic modification of histone proteins plays a key role in regulating gene expression. However, histones themselves can also be dynamic, which potentially affects the stability of histone modifications. To determine the molecular mechanisms of histone turnover, we developed a parallel screening method for epigenetic regulators by analyzing chromatin states on DNA barcodes. Histone turnover was quantified by employing a genetic pulse-chase technique called RITE, which was combined with chromatin immunoprecipitation and high-throughput sequencing. In this screen, the NuB4/HAT-B complex, containing the conserved type B histone acetyltransferase Hat1, was found to promote histone turnover. Unexpectedly, the three members of this complex could be functionally separated from each other as well as from the known interacting factor and histone chaperone Asf1. Thus, systematic and direct interrogation of chromatin structure on DNA barcodes can lead to the discovery of genes and pathways involved in chromatin modification and dynamics

    Recombination-Induced tag exchange (RITE) cassette series to monitor protein dynamics in Saccharomyces cerevisiae

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution Unported License.Proteins are not static entities. They are highly mobile and their steady state levels are achieved by a balance between ongoing synthesis and degradation. The dynamic properties of a protein can have important consequences for its function. For example, when a protein is degraded and replaced by a newly synthesized one, post-translational modifications are lost and need to be reincorporated in the new molecules. Protein stability and mobility are also relevant for duplication of macromolecular structures or organelles, which involves coordination of protein inheritance with the synthesis and assembly of newly synthesized proteins. To measure protein dynamics we recently developed a genetic pulse-chase assay called Recombination-Induced Tag Exchange (RITE). RITE has been successfully used in Saccharomyces cerevisiae to measure turnover and inheritance of histone proteins, to study changes in post-translational modifications on aging proteins, and to visualize the spatiotemporal inheritance of protein complexes and organelles in dividing cells. Here we describe a series of successful RITE cassettes that are designed for biochemical analyses, genomics studies, as well as single cell fluorescence applications. Importantly, the genetic nature and the stability of the tag-switch offer the unique possibility to combine RITE with high-throughput screening for protein dynamics mutants and mechanisms. The RITE cassettes are widely applicable, modular by design, and can therefore be easily adapted for use in other cell types or organisms.This project was sponsored by the Netherlands Genomics Initiative and by The Netherlands Organization for Scientific Research.Peer Reviewe

    Flexibility in crosstalk between H2B ubiquitination and H3 methylation in vivo

    Get PDF
    Histone H2B ubiquitination is a dynamic modification that promotes methylation of histone H3K79 and H3K4. This crosstalk is important for the DNA damage response and has been implicated in cancer. Here, we show that in engineered yeast strains, ubiquitins tethered to every nucleosome promote H3K79 and H3K4 methylation from a proximal as well as a more distal site, but only if in a correct orientation. This plasticity indicates that the exact location of the attachment site, the native ubiquitin-lysine linkage and ubiquitination cycles are not critical for trans-histone crosstalk in vivo. The flexibility in crosstalk also indicates that other ubiquitination events may promote H3 methylation.FvL and HV were supported the Dutch Cancer Society (KWF2009‐4511) and the Netherlands Genomics Initiative.Peer Reviewe

    Decoding the chromatin proteome of a single genomic locus by DNA sequencing

    Full text link
    AbstractTranscription, replication and repair involve interactions of specific genomic loci with many different proteins. How these interactions are orchestrated at any given location and under changing cellular conditions is largely unknown because systematically measuring protein-DNA interactions at a specific locus in the genome is challenging. To address this problem, we developed Epi-Decoder, a Tag-ChIP-Barcode-Seq technology in budding yeast to identify and quantify in an unbiased and systematic manner the proteome of an individual genomic locus. Epi-Decoder is orthogonal to proteomics approaches because it does not rely on mass spectrometry but instead takes advantage of DNA sequencing. Analysis of the proteome of a transcribed locus proximal to an origin of replication revealed more than 400 proteins. Moreover, replication stress induced changes in local chromatin-proteome composition prior to local origin firing, affecting replication proteins as well as transcription proteins. Epi-Decoder will enable the delineation of complex and dynamic protein-DNA interactions across many regions of the genome.</jats:p

    Heterologous expression reveals distinct enzymatic activities of two DOT1 histone methyltransferases of<i>Trypanosoma brucei</i>

    Full text link
    Dot1 is a highly conserved methyltransferase that modifies histone H3 on the nucleosome core surface. In contrast to yeast, flies, and humans where a single Dot1 enzyme is responsible for all methylation of H3 lysine 79 (H3K79), African trypanosomes express two DOT1 proteins that methylate histone H3K76 (corresponding to H3K79 in other organisms) in a cell-cycle-regulated manner. Whereas DOT1A is essential for normal cell cycle progression, DOT1B is involved in differentiation and control of antigenic variation of this protozoan parasite. Analysis of DOT1A and DOT1B in trypanosomes or in vitro, to understand how H3K76 methylation is controlled during the cell cycle, is complicated by the lack of genetic tools and biochemical assays. To eliminate these problems, we developed a heterologous expression system in yeast. Whereas Trypanosoma brucei DOT1A predominantly dimethylated H3K79, DOT1B trimethylated H3K79 even in the absence of dimethylation by DOT1A. Furthermore, DOT1A activity was selectively reduced by eliminating ubiquitylation of H2B. The tail of histone H4 was not required for activity of DOT1A or DOT1B. These findings in yeast provide new insights into possible mechanisms of regulation of H3K76 methylation in Trypanosoma brucei.</jats:p

    The effect of acetaminophen on ubiquitin homeostasis in Saccharomyces cerevisiae

    No full text
    Acetaminophen (APAP), although considered a safe drug, is one of the major causes of acute liver failure by overdose, and therapeutic chronic use can cause serious health problems. Although the reactive APAP metabolite N-acetyl-p-benzoquinoneimine (NAPQI) is clearly linked to liver toxicity, toxicity of APAP is also found without drug metabolism of APAP to NAPQI. To get more insight into mechanisms of APAP toxicity, a genome-wide screen in Saccharomyces cerevisiae for APAP-resistant deletion strains was performed. In this screen we identified genes related to the DNA damage response. Next, we investigated the link between genotype and APAP-induced toxicity or resistance by performing a more detailed screen with a library containing mutants of 1522 genes related to nuclear processes, like DNA repair and chromatin remodelling. We identified 233 strains that had an altered growth rate relative to wild type, of which 107 showed increased resistance to APAP and 126 showed increased sensitivity. Gene Ontology analysis identified ubiquitin homeostasis, regulation of transcription of RNA polymerase II genes, and the mitochondria-to-nucleus signalling pathway to be associated with APAP resistance, while histone exchange and modification, and vesicular transport were connected to APAP sensitivity. Indeed, we observed a link between ubiquitin levels and APAP resistance, whereby ubiquitin deficiency conferred resistance to APAP toxicity while ubiquitin overexpression resulted in sensitivity. The toxicity profile of various chemicals, APAP, and its positional isomer AMAP on a series of deletion strains with ubiquitin deficiency showed a unique resistance pattern for APAP. Furthermore, exposure to APAP increased the level of free ubiquitin and influenced the ubiquitination of proteins. Together, these results uncover a role for ubiquitin homeostasis in APAP-induced toxicity
    corecore