380 research outputs found
Task-based Augmented Contour Trees with Fibonacci Heaps
This paper presents a new algorithm for the fast, shared memory, multi-core
computation of augmented contour trees on triangulations. In contrast to most
existing parallel algorithms our technique computes augmented trees, enabling
the full extent of contour tree based applications including data segmentation.
Our approach completely revisits the traditional, sequential contour tree
algorithm to re-formulate all the steps of the computation as a set of
independent local tasks. This includes a new computation procedure based on
Fibonacci heaps for the join and split trees, two intermediate data structures
used to compute the contour tree, whose constructions are efficiently carried
out concurrently thanks to the dynamic scheduling of task parallelism. We also
introduce a new parallel algorithm for the combination of these two trees into
the output global contour tree. Overall, this results in superior time
performance in practice, both in sequential and in parallel thanks to the
OpenMP task runtime. We report performance numbers that compare our approach to
reference sequential and multi-threaded implementations for the computation of
augmented merge and contour trees. These experiments demonstrate the run-time
efficiency of our approach and its scalability on common workstations. We
demonstrate the utility of our approach in data segmentation applications
Jacobi Fiber Surfaces for Bivariate Reeb Space Computation
This paper presents an efficient algorithm for the computation of the Reeb space of an input bivariate piecewise linear scalar function f defined on a tetrahedral mesh. By extending and generalizing algorithmic concepts from the univariate case to the bivariate one, we report the first practical, output-sensitive algorithm for the exact computation of such a Reeb space. The algorithm starts by identifying the Jacobi set of f , the bivariate analogs of critical points in the univariate case. Next, the Reeb space is computed by segmenting the input mesh along the new notion of Jacobi Fiber Surfaces, the bivariate analog of critical contours in the univariate case. We additionally present a simplification heuristic that enables the progressive coarsening of the Reeb space. Our algorithm is simple to implement and most of its computations can be trivially parallelized. We report performance numbers demonstrating orders of magnitude speedups over previous approaches, enabling for the first time the tractable computation of bivariate Reeb spaces in practice. Moreover, unlike range-based quantization approaches (such as the Joint Contour Net), our algorithm is parameter-free. We demonstrate the utility of our approach by using the Reeb space as a semi-automatic segmentation tool for bivariate data. In particular, we introduce continuous scatterplot peeling, a technique which enables the reduction of the cluttering in the continuous scatterplot, by interactively selecting the features of the Reeb space to project. We provide a VTK-based C++ implementation of our algorithm that can be used for reproduction purposes or for the development of new Reeb space based visualization techniques
The Topology ToolKit
This system paper presents the Topology ToolKit (TTK), a software platform
designed for topological data analysis in scientific visualization. TTK
provides a unified, generic, efficient, and robust implementation of key
algorithms for the topological analysis of scalar data, including: critical
points, integral lines, persistence diagrams, persistence curves, merge trees,
contour trees, Morse-Smale complexes, fiber surfaces, continuous scatterplots,
Jacobi sets, Reeb spaces, and more. TTK is easily accessible to end users due
to a tight integration with ParaView. It is also easily accessible to
developers through a variety of bindings (Python, VTK/C++) for fast prototyping
or through direct, dependence-free, C++, to ease integration into pre-existing
complex systems. While developing TTK, we faced several algorithmic and
software engineering challenges, which we document in this paper. In
particular, we present an algorithm for the construction of a discrete gradient
that complies to the critical points extracted in the piecewise-linear setting.
This algorithm guarantees a combinatorial consistency across the topological
abstractions supported by TTK, and importantly, a unified implementation of
topological data simplification for multi-scale exploration and analysis. We
also present a cached triangulation data structure, that supports time
efficient and generic traversals, which self-adjusts its memory usage on demand
for input simplicial meshes and which implicitly emulates a triangulation for
regular grids with no memory overhead. Finally, we describe an original
software architecture, which guarantees memory efficient and direct accesses to
TTK features, while still allowing for researchers powerful and easy bindings
and extensions. TTK is open source (BSD license) and its code, online
documentation and video tutorials are available on TTK's website
Fast and Exact Fiber Surfaces for Tetrahedral Meshes
Isosurfaces are fundamental geometrical objects for the analysis and visualization of volumetric scalar fields. Recent work has generalized them to bivariate volumetric fields with fiber surfaces, the pre-image of polygons in range space. However, the existing algorithm for their computation is approximate, and is limited to closed polygons. Moreover, its runtime performance does not allow instantaneous updates of the fiber surfaces upon user edits of the polygons. Overall, these limitations prevent a reliable and interactive exploration of the space of fiber surfaces. This paper introduces the first algorithm for the exact computation of fiber surfaces in tetrahedral meshes. It assumes no restriction on the topology of the input polygon, handles degenerate cases and better captures sharp features induced by polygon bends. The algorithm also allows visualization of individual fibers on the output surface, better illustrating their relationship with data features in range space. To enable truly interactive exploration sessions, we further improve the runtime performance of this algorithm. In particular, we show that it is trivially parallelizable and that it scales nearly linearly with the number of cores. Further, we study acceleration data-structures both in geometrical domain and range space and we show how to generalize interval trees used in isosurface extraction to fiber surface extraction. Experiments demonstrate the superiority of our algorithm over previous work, both in terms of accuracy and running time, with up to two orders of magnitude speedups. This improvement enables interactive edits of range polygons with instantaneous updates of the fiber surface for exploration purpose. A VTK-based reference implementation is provided as additional material to reproduce our results
Wasserstein Auto-Encoders of Merge Trees (and Persistence Diagrams)
This paper presents a computational framework for the Wasserstein
auto-encoding of merge trees (MT-WAE), a novel extension of the classical
auto-encoder neural network architecture to the Wasserstein metric space of
merge trees. In contrast to traditional auto-encoders which operate on
vectorized data, our formulation explicitly manipulates merge trees on their
associated metric space at each layer of the network, resulting in superior
accuracy and interpretability. Our novel neural network approach can be
interpreted as a non-linear generalization of previous linear attempts [79] at
merge tree encoding. It also trivially extends to persistence diagrams.
Extensive experiments on public ensembles demonstrate the efficiency of our
algorithms, with MT-WAE computations in the orders of minutes on average. We
show the utility of our contributions in two applications adapted from previous
work on merge tree encoding [79]. First, we apply MT-WAE to merge tree
compression, by concisely representing them with their coordinates in the final
layer of our auto-encoder. Second, we document an application to dimensionality
reduction, by exploiting the latent space of our auto-encoder, for the visual
analysis of ensemble data. We illustrate the versatility of our framework by
introducing two penalty terms, to help preserve in the latent space both the
Wasserstein distances between merge trees, as well as their clusters. In both
applications, quantitative experiments assess the relevance of our framework.
Finally, we provide a C++ implementation that can be used for reproducibility.Comment: arXiv admin note: text overlap with arXiv:2207.1096
Remnants of Identity: Tracing Ancestry in the 19th-Century Rush Medical College Anatomical Collection
This research examines a 19th-century skeletal collection (Rush Medical College Collection) housed at the Field Museum of Natural History to explore whether the original documents designating the recorded “race” of each individual can be corroborated using a modern statistical program (FORDISC 3.1), since how museum workers would have known the ‘race’ of the individuals cannot be determined. The Rush Medical College Collection reflects society’s attitudes towards our nation\u27s most vulnerable individuals, even after death. This research allows us to gain a deeper understanding of the potential effects of marginalization and disenfranchisement in 19th-century Chicago
Generalized topological simplification of scalar fields on surfaces
pre-printWe present a combinatorial algorithm for the general topological simplification of scalar fields on surfaces. Given a scalar field f, our algorithm generates a simplified field g that provably admits only critical points from a constrained subset of the singularities of f, while guaranteeing a small distance ||f - g||∞ for data-fitting purpose. In contrast to previous algorithms, our approach is oblivious to the strategy used for selecting features of interest and allows critical points to be removed arbitrarily. When topological persistence is used to select the features of interest, our algorithm produces a standard ϵ-simplification. Our approach is based on a new iterative algorithm for the constrained reconstruction of sub- and sur-level sets. Extensive experiments show that the number of iterations required for our algorithm to converge is rarely greater than 2 and never greater than 5, yielding O(n log(n)) practical time performances. The algorithm handles triangulated surfaces with or without boundary and is robust to the presence of multi-saddles in the input. It is simple to implement, fast in practice and more general than previous techniques. Practically, our approach allows a user to arbitrarily simplify the topology of an input function and robustly generate the corresponding simplified function. An appealing application area of our algorithm is in scalar field design since it enables, without any threshold parameter, the robust pruning of topological noise as selected by the user. This is needed for example to get rid of inaccuracies introduced by numerical solvers, thereby providing topological guarantees needed for certified geometry processing. Experiments show this ability to eliminate numerical noise as well as validate the time efficiency and accuracy of our algorithm. We provide a lightweight C++ implementation as supplemental material that can be used for topological cleaning on surface meshes
Principal Geodesic Analysis of Merge Trees (and Persistence Diagrams)
This paper presents a computational framework for the Principal Geodesic
Analysis of merge trees (MT-PGA), a novel adaptation of the celebrated
Principal Component Analysis (PCA) framework [87] to the Wasserstein metric
space of merge trees [92]. We formulate MT-PGA computation as a constrained
optimization problem, aiming at adjusting a basis of orthogonal geodesic axes,
while minimizing a fitting energy. We introduce an efficient, iterative
algorithm which exploits shared-memory parallelism, as well as an analytic
expression of the fitting energy gradient, to ensure fast iterations. Our
approach also trivially extends to extremum persistence diagrams. Extensive
experiments on public ensembles demonstrate the efficiency of our approach -
with MT-PGA computations in the orders of minutes for the largest examples. We
show the utility of our contributions by extending to merge trees two typical
PCA applications. First, we apply MT-PGA to data reduction and reliably
compress merge trees by concisely representing them by their first coordinates
in the MT-PGA basis. Second, we present a dimensionality reduction framework
exploiting the first two directions of the MT-PGA basis to generate
two-dimensional layouts of the ensemble. We augment these layouts with
persistence correlation views, enabling global and local visual inspections of
the feature variability in the ensemble. In both applications, quantitative
experiments assess the relevance of our framework. Finally, we provide a
lightweight C++ implementation that can be used to reproduce our results
Progressive Wasserstein Barycenters of Persistence Diagrams
This paper presents an efficient algorithm for the progressive approximation
of Wasserstein barycenters of persistence diagrams, with applications to the
visual analysis of ensemble data. Given a set of scalar fields, our approach
enables the computation of a persistence diagram which is representative of the
set, and which visually conveys the number, data ranges and saliences of the
main features of interest found in the set. Such representative diagrams are
obtained by computing explicitly the discrete Wasserstein barycenter of the set
of persistence diagrams, a notoriously computationally intensive task. In
particular, we revisit efficient algorithms for Wasserstein distance
approximation [12,51] to extend previous work on barycenter estimation [94]. We
present a new fast algorithm, which progressively approximates the barycenter
by iteratively increasing the computation accuracy as well as the number of
persistent features in the output diagram. Such a progressivity drastically
improves convergence in practice and allows to design an interruptible
algorithm, capable of respecting computation time constraints. This enables the
approximation of Wasserstein barycenters within interactive times. We present
an application to ensemble clustering where we revisit the k-means algorithm to
exploit our barycenters and compute, within execution time constraints,
meaningful clusters of ensemble data along with their barycenter diagram.
Extensive experiments on synthetic and real-life data sets report that our
algorithm converges to barycenters that are qualitatively meaningful with
regard to the applications, and quantitatively comparable to previous
techniques, while offering an order of magnitude speedup when run until
convergence (without time constraint). Our algorithm can be trivially
parallelized to provide additional speedups in practice on standard
workstations. [...
- …
