266 research outputs found

    Staphylococcus aureus Lipase 1 Enhances Influenza A Virus Replication

    Get PDF
    Influenza A virus (IAV) causes annual epidemics of respiratory disease in humans, often complicated by secondary coinfection with bacterial pathogens such as Staphylococcus aureus. Here, we report that the S. aureus secreted protein lipase 1 enhances IAV replication in vitro in primary cells, including human lung fibroblasts. The proviral activity of lipase 1 is dependent on its enzymatic function, acts late in the viral life cycle, and results in increased infectivity through positive modulation of virus budding. Furthermore, the proviral effect of lipase 1 on IAV is exhibited during in vivo infection of embryonated hen’s eggs and, importantly, increases the yield of a vaccine strain of IAV by approximately 5-fold. Thus, we have identified the first S. aureus protein to enhance IAV replication, suggesting a potential role in coinfection. Importantly, this activity may be harnessed to address global shortages of influenza vaccines. IMPORTANCE Influenza A virus (IAV) causes annual epidemics and sporadic pandemics of respiratory disease. Secondary bacterial coinfection by organisms such as Staphylococcus aureus is the most common complication of primary IAV infection and is associated with high levels of morbidity and mortality. Here, we report the first identified S. aureus factor (lipase 1) that enhances IAV replication during infection via positive modulation of virus budding. The effect is observed in vivo in embryonated hen’s eggs and greatly enhances the yield of a vaccine strain, a finding that could be applied to address global shortages of influenza vaccines

    The Stem Cell Research Environment:A Patchwork of Patchworks

    Get PDF
    Few areas of recent research have received as much focus or generated as much excitement and debate as stem cell research. Hope for the therapeutic promise of this field has been matched by social concern associated largely with the sources of stem cells and their uses. This interplay between promise and controversy has contributed to the enormous variation that exists among the environments in which stem cell research is conducted throughout the world. This variation is layered upon intra-jurisdictional policies that are also often complex and in flux, resulting in what we term a 'patchwork of patchworks'. This patchwork of patchworks and its implications will become increasingly important as we enter this new era of stem cell research. The current progression towards translational and clinical research among international collaborators serves as a catalyst for identifying potential policy conflict and makes it imperative to address jurisdictional variability in stem cell research environments. The existing patchworks seen in contemporary stem cell research environments provide a valuable opportunity to consider how variations in regulations and policies across and within jurisdictions influence research efficiencies and directions. In one sense, the stem cell research context can be viewed as a living experiment occurring across the globe. The lessons to be gleaned from examining this field have great potential for broad-ranging general science policy application

    HUMAN SECURITY AND INTERNATIONAL LAW

    No full text
    corecore