190 research outputs found

    Seasonal cycle and source analyses of aerosol optical properties in a semi-urban environment at Puijo station in Eastern Finland

    Get PDF
    We introduce a four-year (in 2006–2010) continuous data set of aerosol optical properties at Puijo in Kuopio, Finland. We study the annual and diurnal variation of the aerosol scattering and absorption coefficients, hemispheric backscattering fraction, scattering Ångström exponent, and single scattering albedo, whose median values over this period were 7.2 Mm<sup>−1</sup> (at 550 nm), 1.0 Mm<sup>−1</sup> (at 637 nm), 0.15, 1.93 (between 450 and 550 nm), and 0.85, respectively. The scattering coefficient peaked in the spring and autumn, being 2–4 times those in the summer and winter. An exception was the summer of 2010, when the scattering coefficient was elevated to ~300 Mm<sup>−1</sup> by plumes from forest fires in Russia. The absorption coefficient peaked in the winter when soot-containing particles derived from biomass burning were present. The higher relative absorption coefficients resulted in lower single scattering albedo in winter. The optical properties varied also with wind direction and time of the day, indicating the effect of the local pollutant sources and the age of the particles. Peak values in the single scattering albedo were observed when the wind blew from a paper mill and from the sector without local pollutant sources. These observations were linked, respectively, to the sulphate-rich aerosol from the paper mill and the oxygenated organics in the aged aerosol, which both are known to increase the scattering characteristics of aerosols. Decreases in the single scattering albedo in the morning and afternoon, distinct in the summertime, were linked to the increased traffic density at these hours. The scattering and absorption coefficients of residential and long-range transported aerosol (two separate cloud events) were found to be decreased by clouds. The effect was stronger for the scattering than absorption, indicating preferential activation of the more hygroscopic aerosol with higher scattering characteristics

    Organic aerosol concentration and composition over Europe: insights from comparison of regional model predictions with aerosol mass spectrometer factor analysis

    Get PDF
    A detailed three-dimensional regional chemical transport model (Particulate Matter Comprehensive Air Quality Model with Extensions, PMCAMx) was applied over Europe, focusing on the formation and chemical transformation of organic matter. Three periods representative of different seasons were simulated, corresponding to intensive field campaigns. An extensive set of AMS measurements was used to evaluate the model and, using factor-analysis results, gain more insight into the sources and transformations of organic aerosol (OA). Overall, the agreement between predictions and measurements for OA concentration is encouraging, with the model reproducing two-thirds of the data (daily average mass concentrations) within a factor of 2. Oxygenated OA (OOA) is predicted to contribute 93% to total OA during May, 87% during winter and 96% during autumn, with the rest consisting of fresh primary OA (POA). Predicted OOA concentrations compare well with the observed OOA values for all periods, with an average fractional error of 0.53 and a bias equal to −0.07 (mean error = 0.9 μg m−3, mean bias = −0.2 μg m−3). The model systematically underpredicts fresh POA at most sites during late spring and autumn (mean bias up to −0.8 μg m−3). Based on results from a source apportionment algorithm running in parallel with PMCAMx, most of the POA originates from biomass burning (fires and residential wood combustion), and therefore biomass burning OA is most likely underestimated in the emission inventory. The sensitivity of POA predictions to the corresponding emissions' volatility distribution is discussed. The model performs well at all sites when the Positive Matrix Factorization (PMF)-estimated low-volatility OOA is compared against the OA with saturation concentrations of the OA surrogate species C* ≤ 0.1 μg m−3 and semivolatile OOA against the OA with C* > 0.1 μg m−3

    Evaluation of the radioactive waste characterisation at the Olkiluoto nuclear power plant

    Get PDF

    South African EUCAARI measurements: seasonal variation of trace gases and aerosol optical properties

    Get PDF
    In this paper we introduce new in situ observations of atmospheric aerosols, especially chemical composition, physical and optical properties, on the eastern brink of the heavily polluted Highveld area in South Africa. During the observation period between 11 February 2009 and 31 January 2011, the mean particle number concentration (size range 10–840 nm) was 6310 cm−3 and the estimated volume of sub-10 μm particles 9.3 μm3 m−3. The aerosol absorption and scattering coefficients at 637 nm were 8.3Mm−1 and 49.5Mm−1, respectively. The mean single-scattering albedo at 637 nm was 0.84 and the A° ngstro¨m exponent of scattering was 1.5 over the wavelength range 450–635 nm. The mean O3, SO2, NOx and H2S-concentrations were 37.1, 11.5, 15.1 and 3.2 ppb, respectively. The observed range of concentrations was large and attributed to the seasonal variation of sources and regional meteorological effects, especially the anticyclonic re-circulation and strong winter-time inversions. In a global context, the levels of gases and particulates were typical for continental sites with strong anthropogenic influence, but clearly lower than the most polluted areas of southeastern Asia. Of all pollutants observed at the site, ozone is the most likely to have adverse environmental effects, as the concentrations were high also during the growing season. The measurements presented here will help to close existing gaps in the ground-based global atmosphere observation system, since very little long-term data of this nature is available for southern Africa.JRC.H.7-Climate Risk Managemen

    Characterisation of sub-micron particle number concentrations and formation events in the western Bushveld Igneous Complex, South Africa

    Get PDF
    South Africa holds significant mineral resources, with a substantial fraction of these reserves occurring and being processed in a large geological structure termed the Bushveld Igneous Complex (BIC). The area is also highly populated by informal, semi-formal and formal residential developments. However, knowledge of air quality and research related to the atmosphere is still very limited in the area. In order to investigate the characteristics and processes affecting sub-micron particle number concentrations and formation events, air ion and aerosol particle size distributions and number concentrations, together with meteorological parameters, trace gases and particulate matter (PM) were measured for over two years at Marikana in the heart of the western BIC. The observations showed that trace gas (i.e. SO2, NOx, CO) and black carbon concentrations were relatively high, but in general within the limits of local air quality standards. The area was characterised by very high condensation sink due to background aerosol particles, PM10 and O3 concentration. The results indicated that high amounts of Aitken and accumulation mode particles originated from domestic burning for heating and cooking in the morning and evening, while during daytime SO2-based nucleation followed by the growth by condensation of vapours from industrial, residential and natural sources was the most probable source for large number concentrations of nucleation and Aitken mode particles. Nucleation event day frequency was extremely high, i.e. 86% of the analysed days, which to the knowledge of the authors is the highest frequency ever reported. The air mass back trajectory and wind direction analyses showed that the secondary particle formation was influenced both by local and regional pollution and vapour sources. Therefore, our observation of the annual cycle and magnitude of the particle formation and growth rates during nucleation events were similar to results previously published for a semi-clean savannah site in South Africa

    Lidar estimates of birch pollen number, mass, and CCN-related concentrations

    Get PDF
    The accurate representation of microphysical properties of atmospheric aerosol particles – such as the number, mass, and cloud condensation nuclei (CCN) concentration – is key to constraining climate forcing estimations and improving weather and air quality forecasts. Lidars capable of vertically resolving aerosol optical properties have been increasingly utilized to study aerosol–cloud interactions, allowing for estimations of cloud-relevant microphysical properties. Recently, lidars have been employed to identify and monitor pollen particles in the atmosphere, an understudied aerosol particle with health and possibly climate implications. Lidar remote sensing of pollen is an emerging research field, and in this study, we present for the first time retrievals of particle number, mass, CCN, giant CCN (GCCN), and ultragiant CCN (UGCCN) concentration estimations of birch pollen derived from polarization lidar observations and specifically from a PollyXT lidar and a Vaisala CL61 ceilometer at 532 and 910 nm, respectively. A pivotal role in these estimations is played by the conversion factors necessary to convert the optical measurements into microphysical properties. This set of conversion parameters for birch pollen is derived from in situ observations of major birch pollen events at Vehmasmäki station in eastern Finland. The results show that under well-mixed conditions, surface measurements from in situ instrumentation can be correlated with lidar observations at higher altitudes to estimate the conversion factors. Better linear agreement to the in situ observations was found at the longer wavelength of 910 nm, which is attributed to a combination of lower overlap and higher sensitivity to bigger particles compared to observations at 532 nm. Then, the conversion factors are applied to ground-based lidar observations and compared against in situ measurements of aerosol and pollen particles. In turn, this demonstrates the potential of ground-based lidars such as a ceilometer network with the polarization capacity to document large-scale birch pollen outbursts in detail and thus to provide valuable information for climate, cloud, and air quality modeling efforts, elucidating the role of pollen within the atmospheric system.</p
    corecore