21 research outputs found
Association between promoter -1607 polymorphism of MMP1 and Lumbar Disc Disease in Southern Chinese
<p>Abstract</p> <p>Background</p> <p>Matrix metalloproteinases (MMPs) are involved in the degradation of the extracellular matrix of the intervertebral disc. A SNP for guanine insertion/deletion (G/D), the -1607 promoter polymorphism, of the <it>MMP1 </it>gene was found significantly affecting promoter activity and corresponding transcription level. Hence it is a good candidate for genetic studies in DDD.</p> <p>Methods</p> <p>Southern Chinese volunteers between 18 and 55 years were recruited from the population. DDD in the lumbar spine was defined by MRI using Schneiderman's classification. Genomic DNA was isolated from the leukocytes and genotyping was performed using the Sequenom<sup>® </sup>platform. Association and Hardy-Weinberg equilibrium checking were assessed by Chi-square test and Mann-Whitney U test.</p> <p>Results</p> <p>Our results showed substantial evidence of association between -1607 promoter polymorphism of <it>MMP1 </it>and DDD in the Southern Chinese subjects. D allelic was significantly associated with DDD (p value = 0.027, odds ratio = 1.41 with 95% CI = 1.04–1.90) while Genotypic association on the presence of D allele was also significantly associated with DDD (p value = 0.046, odds ratio = 1.50 with 95% CI = 1.01–2.24). Further age stratification showed significant genotypic as well as allelic association in the group of over 40 years (genotypic: p value = 0.035, odds ratio = 1.617 with 95% CI = 1.033–2.529; allelic: p value = 0.033, odds ratio = 1.445 with 95% CI = 1.029–2.029). Disc bulge, annular tears and the Schmorl's nodes were not associated with the D allele.</p> <p>Conclusion</p> <p>We demonstrated that individuals with the presence of D allele for the -1607 promoter polymorphism of <it>MMP1 </it>are about 1.5 times more susceptible to develop DDD when compared with those having G allele only. Further association was identified in individuals over 40 years of age. Disc bulge, annular tear as well as Schmorl's nodes were not associated with this polymorphism.</p
Association of a COL1A1 polymorphism with lumbar disc disease in young military recruits
Reconstruction of the anterior cruciate ligament using the polyester ABC ligament scaffold
Polymorphisms of the Vitamin D Receptor Gene and Stress Fractures
Our aim was to evaluate the association between VDR polymorphisms and calcaneal Stiffness Index (SI) with stress fractures in a case control study including male military personnel. Thirty- two patients with stress fractures were matched with 32 uninjured healthy volunteers (controls), by gender, age, height, body weight, and level of physical activity. The two groups were genotyped for the FokI, BsmI, ApaI, and TaqI polymorphisms of the VDR gene with PCR-RFLP method. In addition, calcaneal SI was measured by heel quantitative ultrasound in both groups. Data were analyzed by chi-squared test and logistic regression analysis. The f allele was significantly more frequent in patients than in controls (p=0.013), while the B allele showed such a tendency without reaching statistical significance (p=0.052). Among the entire cohort, a 2.7-fold and a 2.0-fold increase in risk of stress fractures was associated with the f and B alleles (OR, 2.7, 95% CI, 1.2–5.9; p=0.014 and OR, 2.0, 95% CI, 1.0–4.1; p=0.053, respectively). No statistically significant association was found between the incidence of stress fractures and t or a alleles. Decreased T-scores were also associated with the presence of f and B alleles. Mean values of T-scores of SI were statistically significantly lower in patients than in controls (p=0.018). These results suggest that the FokI and BsmI polymorphisms of the VDR gene could be associated with increased risk of stress fractures among military personnel. Moreover, a low calcaneal SI could represent a measurable index of this increased risk
