2,400 research outputs found

    On a Low-Rate TLDPC Code Ensemble and the Necessary Condition on the Linear Minimum Distance for Sparse-Graph Codes

    Full text link
    This paper addresses the issue of design of low-rate sparse-graph codes with linear minimum distance in the blocklength. First, we define a necessary condition which needs to be satisfied when the linear minimum distance is to be ensured. The condition is formulated in terms of degree-1 and degree-2 variable nodes and of low-weight codewords of the underlying code, and it generalizies results known for turbo codes [8] and LDPC codes. Then, we present a new ensemble of low-rate codes, which itself is a subclass of TLDPC codes [4], [5], and which is designed under this necessary condition. The asymptotic analysis of the ensemble shows that its iterative threshold is situated close to the Shannon limit. In addition to the linear minimum distance property, it has a simple structure and enjoys a low decoding complexity and a fast convergence.Comment: submitted to IEEE Trans. on Communication

    Magic state distillation with punctured polar codes

    Get PDF
    We present a scheme for magic state distillation using punctured polar codes. Our results build on some recent work by Bardet et al. (ISIT, 2016) who discovered that polar codes can be described algebraically as decreasing monomial codes. Using this powerful framework, we construct tri-orthogonal quantum codes (Bravyi et al., PRA, 2012) that can be used to distill magic states for the TT gate. An advantage of these codes is that they permit the use of the successive cancellation decoder whose time complexity scales as O(Nlog(N))O(N\log(N)). We supplement this with numerical simulations for the erasure channel and dephasing channel. We obtain estimates for the dimensions and error rates for the resulting codes for block sizes up to 2202^{20} for the erasure channel and 2162^{16} for the dephasing channel. The dimension of the triply-even codes we obtain is shown to scale like O(N0.8)O(N^{0.8}) for the binary erasure channel at noise rate 0.010.01 and O(N0.84)O(N^{0.84}) for the dephasing channel at noise rate 0.0010.001. The corresponding bit error rates drop to roughly 8×10288\times10^{-28} for the erasure channel and 7×10157 \times 10^{-15} for the dephasing channel respectively.Comment: 18 pages, 4 figure

    New algorithms for decoding in the rank metric and an attack on the LRPC cryptosystem

    Full text link
    We consider the decoding problem or the problem of finding low weight codewords for rank metric codes. We show how additional information about the codeword we want to find under the form of certain linear combinations of the entries of the codeword leads to algorithms with a better complexity. This is then used together with a folding technique for attacking a McEliece scheme based on LRPC codes. It leads to a feasible attack on one of the parameters suggested in \cite{GMRZ13}.Comment: A shortened version of this paper will be published in the proceedings of the IEEE International Symposium on Information Theory 2015 (ISIT 2015

    A Distinguisher-Based Attack on a Variant of McEliece's Cryptosystem Based on Reed-Solomon Codes

    Full text link
    Baldi et \textit{al.} proposed a variant of McEliece's cryptosystem. The main idea is to replace its permutation matrix by adding to it a rank 1 matrix. The motivation for this change is twofold: it would allow the use of codes that were shown to be insecure in the original McEliece's cryptosystem, and it would reduce the key size while keeping the same security against generic decoding attacks. The authors suggest to use generalized Reed-Solomon codes instead of Goppa codes. The public code built with this method is not anymore a generalized Reed-Solomon code. On the other hand, it contains a very large secret generalized Reed-Solomon code. In this paper we present an attack that is built upon a distinguisher which is able to identify elements of this secret code. The distinguisher is constructed by considering the code generated by component-wise products of codewords of the public code (the so-called "square code"). By using square-code dimension considerations, the initial generalized Reed-Solomon code can be recovered which permits to decode any ciphertext. A similar technique has already been successful for mounting an attack against a homomorphic encryption scheme suggested by Bogdanoc et \textit{al.}. This work can be viewed as another illustration of how a distinguisher of Reed-Solomon codes can be used to devise an attack on cryptosystems based on them.Comment: arXiv admin note: substantial text overlap with arXiv:1203.668

    Time resolved spectroscopy of the multiperiodic pulsating subdwarf B star PG1605+072

    Get PDF
    We present results for the 2m spectroscopic part of the MultiSite Spectroscopic Telescope campaign, which took place in May/June 2002. In order to perform an asteroseismological analysis on the multiperiodic pulsating subdwarf B star PG 1605+072 we used over 150 hours of time resolved spectroscopy in order to search for and analyse line profile variations by using phase binning. We succeeded in finding variations in effective temperature and gravity for four modes. A pilot analysis using the \textit{BRUCE} and \textit{KYLIE} programs and assuming strong rotation and low inclination favours models with l=1l=1 or l=2l=2 with m0m\leq0.Comment: 2 pages, 2 figures, proceedings of the "Vienna Workshop on the Future of Asteroseismology", to appear in Communications in Asteroseismology v. 14

    New Identities Relating Wild Goppa Codes

    Get PDF
    For a given support LFqmnL \in \mathbb{F}_{q^m}^n and a polynomial gFqm[x]g\in \mathbb{F}_{q^m}[x] with no roots in Fqm\mathbb{F}_{q^m}, we prove equality between the qq-ary Goppa codes Γq(L,N(g))=Γq(L,N(g)/g)\Gamma_q(L,N(g)) = \Gamma_q(L,N(g)/g) where N(g)N(g) denotes the norm of gg, that is gqm1++q+1.g^{q^{m-1}+\cdots +q+1}. In particular, for m=2m=2, that is, for a quadratic extension, we get Γq(L,gq)=Γq(L,gq+1)\Gamma_q(L,g^q) = \Gamma_q(L,g^{q+1}). If gg has roots in Fqm\mathbb{F}_{q^m}, then we do not necessarily have equality and we prove that the difference of the dimensions of the two codes is bounded above by the number of distinct roots of gg in Fqm\mathbb{F}_{q^m}. These identities provide numerous code equivalences and improved designed parameters for some families of classical Goppa codes.Comment: 14 page

    The problem with the SURF scheme

    Get PDF
    There is a serious problem with one of the assumptions made in the security proof of the SURF scheme. This problem turns out to be easy in the regime of parameters needed for the SURF scheme to work. We give afterwards the old version of the paper for the reader's convenience.Comment: Warning : we found a serious problem in the security proof of the SURF scheme. We explain this problem here and give the old version of the paper afterward
    corecore