1,810 research outputs found
Search for exotic Higgs outside the MSSM
Recent preliminary results of searches for Higgs bosons outside the minimal supersymmetric standard model (MSSM) are summarised. These results are based on data from the four LEP experiments: ALEPH, DELPHI, L3 and OPAL, at a centre-of-mass energies up to 189 GeV. Some new results from the two Tevatron experiments: CDF and D0, are also presented. Finally, the potential mass reach for exotic Higgs at future accelerators are discussed
Prospects for Dark Energy Evolution: a Frequentist Multi-Probe Approach
A major quest in cosmology is the understanding of the nature of dark energy.
It is now well known that a combination of cosmological probes is required to
break the underlying degeneracies on cosmological parameters. In this paper, we
present a method, based on a frequentist approach, to combine probes without
any prior constraints, taking full account of the correlations in the
parameters. As an application, a combination of current SNIa and CMB data with
an evolving dark energy component is first compared to other analyses. We
emphasise the consequences of the implementation of the dark energy
perturbations on the result for a time varying equation of state. The impact of
future weak lensing surveys on the measurement of dark energy evolution is then
studied in combination with future measurements of the cosmic microwave
background and type Ia supernovae. We present the combined results for future
mid-term and long-term surveys and confirm that the combination with weak
lensing is very powerful in breaking parameter degeneracies. A second
generation of experiment is however required to achieve a 0.1 error on the
parameters describing the evolution of dark energy.Comment: Submitted to Astronomy & Astrophysics 14 pages, 8 figure
On a weak Gauss law in general relativity and torsion
We present an explicit example showing that the weak Gauss law of general
relativity (with cosmological constant) fails in Einstein-Cartan's theory. We
take this as an indication that torsion might replace dark matter.Comment: 10 pages. Version 2 corrects a factor 3 in Cartan's equations to
become
Modelling the relative velocities of isolated pairs of galaxies
We study the comoving relative velocities, v12, of model isolated galaxy
pairs at z=0.5. For this purpose, we use the predictions from the GALFORM
semi-analytical model of galaxy formation and evolution based on a Lambda cold
dark matter cosmology consistent with the results from WMAP7. In real space, we
find that isolated pairs of galaxies are predicted to form an angle t with the
line-of-sight that is uniformily distributed as expected if the Universe is
homogeneous and isotropic. We also find that isolated pairs of galaxies
separated by a comoving distance between 1 and 3 Mpc/h are predicted to have
=0. For galaxies in this regime, the distribution of the angle t is
predicted to change minimally from real to redshift space, with a change
smaller than 5% in . However, the distances defining the comoving
regime strongly depends on the applied isolation criteria.Comment: 4 pages, 4 figures, SF2A 2013 Proceedin
Catastrophic Photo-z Errors and the Dark Energy Parameter Estimates with Cosmic Shear
We study the impact of catastrophic errors occurring in the photometric
redshifts of galaxies on cosmological parameter estimates with cosmic shear
tomography. We consider a fiducial survey with 9-filter set and perform photo-z
measurement simulations. It is found that a fraction of 1% galaxies at
z_{spec}~0.4 is misidentified to be at z_{phot}~3.5. We then employ both chi^2
fitting method and the extension of Fisher matrix formalism to evaluate the
bias on the equation of state parameters of dark energy, w_0 and w_a, induced
by those catastrophic outliers. By comparing the results from both methods, we
verify that the estimation of w_0 and w_a from the fiducial 5-bin tomographic
analyses can be significantly biased. To minimize the impact of this bias, two
strategies can be followed: (A) the cosmic shear analysis is restricted to
0.5<z<2.5 where catastrophic redshift errors are expected to be insignificant;
(B) a spectroscopic survey is conducted for galaxies with 3<z_{phot}<4. We find
that the number of spectroscopic redshifts needed scales as N_{spec} \propto
f_{cata}\times A where f_{cata}=1% is the fraction of catastrophic redshift
errors (assuming a 9-filter photometric survey) and A is the survey area. For
A=1000 {deg}^2, we find that N_{spec}>320 and 860 respectively in order to
reduce the joint bias in (w_0,w_a) to be smaller than 2\sigma and 1\sigma. This
spectroscopic survey (option B) will improve the Figure of Merit of option A by
a factor \times 1.5 thus making such a survey strongly desirable.Comment: 25 pages, 9 figures. Revised version, as accepted for publication in
Ap
Jackknife resampling technique on mocks: an alternative method for covariance matrix estimation
We present a fast and robust alternative method to compute covariance matrix
in case of cosmology studies. Our method is based on the jackknife resampling
applied on simulation mock catalogues. Using a set of 600 BOSS DR11 mock
catalogues as a reference, we find that the jackknife technique gives a similar
galaxy clustering covariance matrix estimate by requiring a smaller number of
mocks. A comparison of convergence rates show that 7 times fewer
simulations are needed to get a similar accuracy on variance. We expect this
technique to be applied in any analysis where the number of available N-body
simulations is low.Comment: 11 pages, 11 figures, 2 table
On the determination of the deceleration parameter from Supernovae data
Supernovae searches have shown that a simple matter-dominated and
decelerating universe should be ruled out. However a determination of the
present deceleration parameter through a simple kinematical description
is not exempt of possible drawbacks. We show that, with a time dependent
equation of state for the dark energy, a bias is present for : models
which are very far from the so-called Concordance Model can be accommodated by
the data and a simple kinematical analysis can lead to wrong conclusions. We
present a quantitative treatment of this bias and we present our conclusions
when a possible dynamical dark energy is taken into account.Comment: 4 pages, 3 figures, submitte
Cosmological parameter extraction and biases from type Ia supernova magnitude evolution
We study different one-parametric models of type Ia Supernova magnitude
evolution on cosmic time scales. Constraints on cosmological and Supernova
evolution parameters are obtained by combined fits on the actual data coming
from Supernovae, the cosmic microwave background, and baryonic acoustic
oscillations. We find that data prefer a magnitude evolution such that
high-redshift Supernova are brighter than would be expected in a standard
cosmos with a dark energy component. Data however are consistent with
non-evolving magnitudes at the one-sigma level, except special cases.
We simulate a future data scenario where SN magnitude evolution is allowed
for, and neglect the possibility of such an evolution in the fit. We find the
fiducial models for which the wrong model assumption of non-evolving SN
magnitude is not detectable, and for which at the same time biases on the
fitted cosmological parameters are introduced. Of the cosmological parameters
the overall mass density has the strongest chances to be biased due to the
wrong model assumption. Whereas early-epoch models with a magnitude offset ~z^2
show up to be not too dangerous when neglected in the fitting procedure, late
epoch models with magnitude offset ~sqrt(z) have high chances to bias the fit
results.Comment: 12 pages, 5 figures, 3 tables. Accepted for publication by A&A.
Revised version: Corrected Typos, reference added to section
Beyond Einstein-Cartan gravity: Quadratic torsion and curvature invariants with even and odd parity including all boundary terms
Recently, gravitational gauge theories with torsion have been discussed by an
increasing number of authors from a classical as well as from a quantum field
theoretical point of view. The Einstein-Cartan(-Sciama-Kibble) Lagrangian has
been enriched by the parity odd pseudoscalar curvature (Hojman, Mukku, and
Sayed) and by torsion square and curvature square pieces, likewise of even and
odd parity. (i) We show that the inverse of the so-called Barbero-Immirzi
parameter multiplying the pseudoscalar curvature, because of the topological
Nieh-Yan form, can only be appropriately discussed if torsion square pieces are
included. (ii) The quadratic gauge Lagrangian with both parities, proposed by
Obukhov et al. and Baekler et al., emerges also in the framework of Diakonov et
al.(2011). We establish the exact relations between both approaches by applying
the topological Euler and Pontryagin forms in a Riemann-Cartan space expressed
for the first time in terms of irreducible pieces of the curvature tensor.
(iii) Only in a Riemann-Cartan spacetime, that is, in a spacetime with torsion,
parity violating terms can be brought into the gravitational Lagrangian in a
straightforward and natural way. Accordingly, Riemann-Cartan spacetime is a
natural habitat for chiral fermionic matter fields.Comment: 12 page latex, as version 2 an old file was submitted by mistake,
this is now the real corrected fil
- …
