109 research outputs found

    Contrasting Wind Regimes Cause Differences in Primary Production in the Black Sea Eastern and Western Gyres.

    Get PDF
    12-year time series of SeaWiFS chlorophyll a (Chl-a), primary production (PP), sea surface temperature (SST), and meteorological wind speed were used to examine decadal changes in these parameters in the eastern and western Gyres of the Black Sea. In both Gyres, low wind speeds and SST led to higher PP. After 2004, there was a progressive decrease in PP and Chl-a, which co-varied with increasing SST. Chl-a and PP were significantly higher in the western Gyre compared to the eastern Gyre, especially from 1998 to 2004. Wind speed negatively correlated with PP in both Gyres, but the higher wind speed prior to relaxation in the western Gyre led to higher PP during spring and autumn. Variability in annual PP in both Gyres was coupled to fluctuations in the Multivariate ENSO Index (MEI), which affected the wind regime more in the eastern than in the western Gyre. The data suggest that localised wind regimes in the western gyre that are uncoupled from MEI, sustains higher PP in this area

    Radiometric validation of atmospheric correction for MERIS in the Baltic Sea based on continuous observations from ships and AERONET-OC

    Get PDF
    The Baltic Sea is a semi-enclosed sea that is optically dominated by coloured dissolved organic material (CDOM) and has relatively low sun elevation which makes accurate ocean colour remote sensing challenging in these waters. The high absorption, low scattering properties of the Baltic Sea are representative of other optically similar water bodies including the Arctic Ocean, Black Sea, coastal regions adjacent to the CDOM-rich estuaries such as the Amazon, and highly absorbing lakes where radiometric validation is essential in order to develop accurate remote sensing algorithms. Previous studies in this region mainly focused on the validation and improvementofstandardChlorophyll-a (Chla)andattenuation coefficient(kd)ocean colourproducts.Theprimary input to derive these is the water-leaving radiance (Lw) or remote sensing reflectance (Rrs) and it is therefore fundamental toobtainthemostaccurate Lw orRrs beforederivinghigherlevelproducts.Tothisend,theretrieval accuracy of Rrs from Medium Resolution Imaging Spectrometer (MERIS) imagery using six atmospheric correction processors was assessed through above-water measurements at two sites of the Aerosol Robotic Network for Ocean Colour (AERONET-OC; 363 measurements) and a shipborne autonomous platform from which the highest number of measurements were obtained (4986 measurements). The six processors tested were the CoastColour processor (CC), the Case 2 Regional processor for lakes (C2R-Lakes), the Case 2 Regional CoastColour processor (C2R-CC), the FUB/WeW water processor (FUB), the MERIS ground segment processor (MEGS) andPOLYMER. Allprocessorsexceptfor CChadsmallaverage absolutepercentage differences(ψ)inthe wavelength rangefrom 490 nmto 709 nm(ψ 60%. Compared to in situ values, the Rrs(709)/Rrs(665) band ratio had ψ 0.6. Using a score system based on all statistical tests, POLYMER scored highest, while C2R-CC, C2RLakesandFUBhadlowerscores.ThisstudyrepresentsthelargestdatabaseofinsituRrs,themostcomprehensive analysis of AC models for highly absorbing waters and for MERIS, conducted to date. The results have implications for the new generation of Copernicus Sentinel ocean colour satellites

    Accuracy assessment of primary production models with and without photoinhibition using Ocean Colour Climate Change Initiative data in the North East Atlantic Ocean.

    Get PDF
    The accuracy of three satellite models of primary production (PP) of varying complexity was assessed against 95 in situ 14C uptake measurements from the North East Atlantic Ocean (NEA). The models were run using the European Space Agency (ESA), Ocean Colour Climate Change Initiative (OC-CCI) version 3.0 data. The objectives of the study were to determine which is the most accurate PP model for the region in different provinces and seasons, what is the accuracy of the models using both high (daily) and low (eight day) temporal resolution OC-CCI data, and whether the performance of the models is improved by implementing a photoinhibition function? The Platt-Sathyendranath primary production model (PPPSM) was the most accurate over all NEA provinces and, specifically, in the Atlantic Arctic province (ARCT) and North Atlantic Drift (NADR) provinces. The implementation of a photoinhibition function in the PPPSM reduced its accuracy, especially at lower range PP. The Vertical Generalized Production Model-VGPM (PPVGPM) tended to over-estimate PP, especially in summer and in the NADR. The accuracy of PPVGPM improved with the implementation of a photoinhibition function in summer. The absorption model of primary production (PPAph), with and without photoinhibition, was the least accurate model for the NEA. Mapped images of each model showed that the PPVGPM was 150% higher in the NADR compared to PPPSM. In the North Atlantic Subtropical Gyre (NAST) province, PPAph was 355% higher than PPPSM, whereas PPVGPM was 215% higher. A sensitivity analysis indicated that chlorophyll-a (Chl a), or the absorption of phytoplankton, at 443 nm (aph (443)) caused the largest error in the estimation of PP, followed by the photosynthetic rate terms and then the irradiance functions used for each model

    Effect of CO2 enrichment on phytoplankton photosynthesis in the North Atlantic sub-tropical gyre.

    Get PDF
    The effects of changes in CO2 concentration in seawater on phytoplankton community structure and photosynthesis were studied in the North Atlantic sub-tropical gyre. Three shipboard incubations were conducted for 48 h at ∼760 ppm CO2 and control (360 ppm CO2) from 49°N to 7°N during October and November 2010. Elevated CO2 caused a decrease in pH to ∼7.94 compared to ∼8.27 in the control. During one experiment, the biomass of nano- and picoeukaryotes increased under CO2 enrichment, but primary production decreased relative to the control. In two of the experiments the biomass was dominated by dinoflagellates, and there was a significant increase in the maximum photosynthetic rate (PmB) and light-limited slope of photosynthesis (αB) at CO2 concentrations of 760 ppm relative to the controls. 77 K emission spectroscopy showed that the higher photosynthetic rates measured under CO2 enrichment increased the connection of reversible photosystem antennae, which resulted in an increase in light harvesting efficiency and carbon fixation

    Determination of the absorption coefficient of chromophoric dissolved organic matter from underway spectrophotometry

    Get PDF
    Measurements of the absorption coefficient of chromophoric dissolved organic matter (ay) are needed to validate existing ocean-color algorithms. In the surface open ocean, these measurements are challenging because of low ay values. Yet, existing global datasets demonstrate that ay could contribute between 30% to 50% of the total absorption budget in the 400–450 nm spectral range, thus making accurate measurement of ay essential to constrain these uncertainties. In this study, we present a simple way of determining ay using a commercially-available in-situ spectrophotometer operated in underway mode. The obtained ay values were validated using independent collocated measurements. The method is simple to implement, can provide measurements with very high spatio-temporal resolution, and has an accuracy of about 0.0004 m−1 and a precision of about 0.0025 m−1 when compared to independent data (at 440 nm). The only limitation for using this method at sea is that it relies on the availability of relatively large volumes of ultrapure water. Despite this limitation, the method can deliver the ay data needed for validating and assessing uncertainties in ocean-colour algorithms

    Carbon sequestration in the deep Atlantic enhanced by Saharan dust

    Get PDF
    sinking rates of particulate organicmatter. Here we present a two-year time series of sediment trap observations of particulate organic carbon flux to 3,000m depth, measured directly in two locations: the dust-rich central North Atlantic gyre and the dust-poor South Atlantic gyre. We find that carbon fluxes are twice as high and a higher proportion of primary production is exported to depth in the dust-rich North Atlantic gyre. Low stable nitrogen isotope ratios suggest that high fluxes result from the stimulation of nitrogen fixation and productivity following the deposition of dust-borne nutrients. Sediment traps in the northern gyre also collected intact colonies of nitrogen-fixing Trichodesmium species. Whereas ballast in Enhanced atmospheric input of dust-borne nutrients and minerals to the remote surface ocean can potentially increase carbon uptake and sequestration at depth. Nutrients can enhance primary productivity, and mineral particles act as ballast, increasing the southern gyre is predominantly biogenic, dust-derived mineral particles constitute the dominant ballast element during the enhanced carbon fluxes in the northern gyre. We conclude that dust deposition increases carbon sequestration in the North Atlantic gyre through the fertilization of the nitrogen-fixing community in surface waters and mineral ballasting of sinking particles

    Uncertainty in ocean-colour estimates of chlorophyll for phytoplankton groups

    Get PDF
    Over the past decade, techniques have been presented to derive the community structure of phytoplankton at synoptic scales using satellite ocean-color data. There is a growing demand from the ecosystem modeling community to use these products for model evaluation and data assimilation. Yet, from the perspective of an ecosystem modeler these products are of limited use unless: (i) the phytoplankton products provided by the remote-sensing community match those required by the ecosystem modelers; and (ii) information on per-pixel uncertainty is provided to evaluate data quality. Using a large dataset collected in the North Atlantic, we re-tune a method to estimate the chlorophyll concentration of three phytoplankton groups, partitioned according to size [pico- (20 μm)]. The method is modified to account for the influence of sea surface temperature, also available from satellite data, on model parameters and on the partitioning of microphytoplankton into diatoms and dinoflagellates, such that the phytoplankton groups provided match those simulated in a state of the art marine ecosystem model (the European Regional Seas Ecosystem Model, ERSEM). The method is validated using another dataset, independent of the data used to parameterize the method, of more than 800 satellite and in situ match-ups. Using fuzzy-logic techniques for deriving per-pixel uncertainty, developed within the ESA Ocean Colour Climate Change Initiative (OC-CCI), the match-up dataset is used to derive the root mean square error and the bias between in situ and satellite estimates of the chlorophyll for each phytoplankton group, for 14 different optical water types (OWT). These values are then used with satellite estimates of OWTs to map uncertainty in chlorophyll on a per pixel basis for each phytoplankton group. It is envisaged these satellite products will be useful for those working on the validation of, and assimilation of data into, marine ecosystem models that simulate different phytoplankton groups

    Development of a Maximum Specific Photosynthetic Rate Algorithm Based on Remote Sensing Data: a Case Study for the Atlantic Ocean

    Get PDF
    New regional empirical algorithms were developed to obtain maximum specific photosynthetic rates of phytoplankton ( ) in the surface layer of the Atlantic Ocean. These algorithms were based on the dependence of on seawater temperature. Sea Surface Temperature remote sensing data and the PANGAEA global database of photosynthesis–irradiance parameters were used to test the algorithm. In addition, the variability in , both spatially (from 60° S to 85° N) and seasonally, (2002–2013) was estimated. The highest was obtained in December in areas of deep convection and the interaction between the Labrador Current and the Gulf Stream, while minimum values were observed in the northern and equatorial–tropical parts of the ocean during the time intervals between the phytoplankton blooms (March to September–October). In addition, existing and algorithms used in primary production models, as well as the algorithm devel�oped using temperature and chlorophyll a data from AMT-29, which were then tested using the PANGAEA dataset. The results show that the new algorithm developed using seawater temperature data with region�ally adjusted empirical coefficients correlated best with the in situ data

    Micro-phytoplankton photosynthesis, primary production and potential export production in the Atlantic Ocean

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordMicro-phytoplankton is the >20 μm component of the phytoplankton community and plays a major role in the global ocean carbon pump, through the sequestering of anthropogenic CO2 and export of organic carbon to the deep ocean. To evaluate the global impact of the marine carbon cycle, quantification of micro-phytoplankton primary production is paramount. In this paper we use both in situ data and a satellite model to estimate the contribution of micro-phytoplankton to total primary production (PP) in the Atlantic Ocean. From 1995 to 2013, 940 measurements of primary production were made at 258 sites on 23 Atlantic Meridional Transect Cruises from the United Kingdom to the South African or Patagonian Shelf. Micro-phytoplankton primary production was highest in the South Subtropical Convergence (SSTC ∼ 409 ± 720 mg C m−2 d−1), where it contributed between 38 % of the total PP, and was lowest in the North Atlantic Gyre province (NATL ∼ 37 ± 27 mg C m−2 d−1), where it represented 18 % of the total PP. Size-fractionated photosynthesis-irradiance (PE) parameters measured on AMT22 and 23 showed that micro-phytoplankton had the highest maximum photosynthetic rate (PmB) (∼5 mg C (mg Chl a)−1 h−1) followed by nano- (∼4 mg C (mg Chl a)−1 h−1) and pico- (∼2 mg C (mg Chl a)−1 h−1). The highest PmB was recorded in the NATL and lowest in the North Atlantic Drift Region (NADR) and South Atlantic Gyre (SATL). The PE parameters were used to parameterise a remote sensing model of size-fractionated PP, which explained 84 % of the micro-phytoplankton in situ PP variability with a regression slope close to 1. The model was applied to the SeaWiFS time series from 1998–2010, which illustrated that micro-phytoplankton PP remained constant in the NADR, NATL, Canary Current Coastal upwelling (CNRY), Eastern Tropical Atlantic (ETRA), Western Tropical Atlantic (WTRA) and SATL, but showed a gradual increase in the Benguela Upwelling zone (BENG) and South Subtropical Convergence (SSTC). The mean annual carbon fixation of micro-phytoplankton was highest in the CNRY (∼140 g C m−2 yr−1), and lowest in the SATL (27 g C m−2 yr−1). A Thorium-234 based export production (ThExP) algorithm was applied to estimates of total PP in each province. There was a strong coupling between micro-phytoplankton PP and ThExP in the NADR and SSTC where between 23 and 39 % of micro-phytoplankton PP contributed to ThExP. The lowest contribution by micro-phytoplankton to ThExP was in the ETRA and WTRA which were 15 and 21 % respectively. The results suggest that micro-phytoplankton PP in the SSTC is the most efficient export system and the ETRA is the least efficient in the Atlantic Ocean.UK Natural Environment Research Council National CapabilityPOGOEU FP7 project GreenSeasNCE

    High photosynthetic rates associated with pico and nanophytoplankton communities and high stratification index in the North West Atlantic

    Get PDF
    The biological dynamics of pelagic marine ecosystems are strongly influenced by the size structure and ecological succession of phytoplankton, which in turn modifies photosynthetic efficiency. Variability in photosynthetic rates is closely coupled with changes in community structure, but it is difficult to obtain coincident data at high enough resolution to characterise these changes. In this study, we employ hierarchical cluster analysis on chlorophyll-normalised high performance liquid chromatography (HPLC) pigment concentrations from the North West Atlantic, to identify seasonal successional trends amongst phytoplankton populations. Changes in phytoplankton community were also analysed as a function of mean equivalent spherical diameter (MESD) derived from absorption measurements, photosynthetic rates, water-column stratification and temperature. Well-mixed conditions in spring to early summer were associated with populations of large cells containing high concentrations of fucoxanthin, chlorophyll-c1 and chlorophyll-c2 relative to chlorophyll-a (Chl a). As stratification increased over the course of the summer, these cells were replaced by populations dominated by chlorophyll-b, 19'-hexanoyloxyfucoxanthin, 19'-butanoyloxyfucoxanthin and divinyl chlorophyll-a, indicative of small picophytoplankton. As stratification decreased in autumn, MESD and alloxanthin increased, suggesting the presence of cryptophytes. Positive relationships were found between MESD and the quantum yield of photosynthesis (φm) for 7 out of the 8 phytoplankton clusters identified, while negative relationships between mean mixed layer photosynthetically active radiation and φm and the light limited slope of photosynthesis (αB) were observed for 4 clusters, as a result of nutrient limitation and photo-protection. The highest photosynthetic rates were associated with a pico & nanophytoplankton communities, which increased from spring to late summer as stratification intensified. By contrast, diatom communities had the lowest photosynthetic rates throughout the year. These successional patterns in the dominant phytoplankton size-class and phenology support Margalef's mandala in terms of the relationship between turbulence and community structure. The study sheds new light on assemblages dominated by smaller cells, under warm, stratified conditions, having higher photosynthetic efficiencies, which has implications for the carbon flux in the NW Atlantic
    corecore