5,616 research outputs found

    Peer-assisted location authentication and access control for wireless networks

    Get PDF
    This paper presents the development and implementation of a location‐based, lightweight peer‐assisted authentication scheme for use in wireless networks. The notion of peer‐assisted authentication is based upon some target user equipment‐ (UE) seeking authentication and access to a network based upon its physical location. The target UE seeks authentication through the UE of peers in the same network. Compared with previous work, the approach in this paper does not rely on any cryptographic proofs from a central authentication infrastructure, thus avoiding complex infrastructure management. However, the peer‐assisted authentication consumes network channel resources which will impact on network performance. In this paper, we also present an access control algorithm for balancing the location authentication, network quality of service (QoS), network capacity and time delay. The results demonstrate that peer‐assisted authentication considering location authentication and system QoS through dynamic access control strategies can be effectively and efficiently implemented in a number of use cases

    Can Zipf's law be adapted to normalize microarrays?

    Get PDF
    BACKGROUND: Normalization is the process of removing non-biological sources of variation between array experiments. Recent investigations of data in gene expression databases for varying organisms and tissues have shown that the majority of expressed genes exhibit a power-law distribution with an exponent close to -1 (i.e. obey Zipf's law). Based on the observation that our single channel and two channel microarray data sets also followed a power-law distribution, we were motivated to develop a normalization method based on this law, and examine how it compares with existing published techniques. A computationally simple and intuitively appealing technique based on this observation is presented. RESULTS: Using pairwise comparisons using MA plots (log ratio vs. log intensity), we compared this novel method to previously published normalization techniques, namely global normalization to the mean, the quantile method, and a variation on the loess normalization method designed specifically for boutique microarrays. Results indicated that, for single channel microarrays, the quantile method was superior with regard to eliminating intensity-dependent effects (banana curves), but Zipf's law normalization does minimize this effect by rotating the data distribution such that the maximal number of data points lie on the zero of the log ratio axis. For two channel boutique microarrays, the Zipf's law normalizations performed as well as, or better than existing techniques. CONCLUSION: Zipf's law normalization is a useful tool where the Quantile method cannot be applied, as is the case with microarrays containing functionally specific gene sets (boutique arrays)

    Optimizing the reliability of power electronics module isolation substrates

    Get PDF
    Optimal design of a power electronics module isolation substrate is assessed using a combination of finite element structural mechanics analysis and response surface optimisation technique. Primary failure modes in power electronics modules include the loss of structural integrity in the ceramic substrate materials due to stresses induced through thermal cycling. Analysis of the influence of ceramic substrate design parameters is undertaken using a design of experiments approach. Finite element analysis is used to determine the stress distribution for each design, and the results are used to construct a quadratic response surface function. A particle swarm optimisation algorithm is then used to determine the optimal substrate design. Analysis of response surface function gradients is used to perform sensitivity analysis and develop isolation substrate design rules. The influence of design uncertainties introduced through manufacturing tolerances is assessed using a Monte-Carlo algorithm, resulting in a stress distribution histogram. The probability of failure caused by the violation of design constraints has been analyzed. Six geometric design parameters are considered in this work and the most important design parameters have been identified. Overall analysis results can be used to enhance the design and reliability of the component

    Real-time price discovery in stock, bond and foreign exchange markets

    Get PDF
    We characterize the response of U.S., German and British stock, bond and foreign exchange markets to real-time U.S. macroeconomic news. Our analysis is based on a unique data set of high-frequency futures returns for each of the markets. We find that news surprises produce conditional mean jumps; hence high-frequency stock, bond and exchange rate dynamics are linked to fundamentals. The details of the linkages are particularly intriguing as regards equity markets. We show that equity markets react differently to the same news depending on the state of the economy, with bad news having a positive impact during expansions and the traditionally-expected negative impact during recessions. We rationalize this by temporal variation in the competing "cash flow" and "discount rate" effects for equity valuation. This finding helps explain the time-varying correlation between stock and bond returns, and the relatively small equity market news effect when averaged across expansions and recessions. Lastly, relying on the pronounced heteroskedasticity in the high-frequency data, we document important contemporaneous linkages across all markets and countries over-and-above the direct news announcement effects. JEL Klassifikation: F3, F4, G1, C

    ATHENA : a pagerank-based scheme to solve the thundering herd in authentication

    Get PDF
    Vehicles in intelligent transport systems (ITS) react to an emergency situation by broadcasting critical messages like Decentralized Environmental Notification Messages (DENMs). A digital signature is attached to each message to secure the integrity of communication, and this message is inoperative until the authentication completes. This creates a challenge for vehicles to verify massive messages in some scenarios where it could incur the thundering herd in authentication, if there is a critical situation happening in heavy road traffic. To address this problem, we propose ATHENA, a pagerank-based scheme to solve the thundering herd in ITS authentication that utilises the transmission of messages and pagerank algorithm to rank the broadcasting vehicles. Simulation results show the efficiency of ATHENA and the effectiveness of performance enhancements compared with others

    Generation of Ensembles of Individually Resolvable Nitrogen Vacancies Using Nanometer-Scale Apertures in Ultrahigh-Aspect Ratio Planar Implantation Masks

    Full text link
    A central challenge in developing magnetically coupled quantum registers in diamond is the fabrication of nitrogen vacancy (NV) centers with localization below ~20 nm to enable fast dipolar interaction compared to the NV decoherence rate. Here, we demonstrate the targeted, high throughput formation of NV centers using masks with a thickness of 270 nm and feature sizes down to ~1 nm. Super-resolution imaging resolves NVs with a full-width maximum distribution of 26±726\pm7 nm and a distribution of NV-NV separations of 16±516\pm5 nm

    Thermal-mechanical modelling of power electronic module packaging

    Get PDF
    In this paper the reliability of the isolation substrate and chip mountdown solder interconnect of power modules under thermal-mechanical loading has been analysed using a numerical modelling approach. The damage indicators such as the peel stress and the accumulated plastic work density in solder interconnect are calculated for a range of geometrical design parameters, and the effects of these parameters on the reliability are studied by using a combination of the finite element analysis (FEA) method and optimisation techniques. The sensitivities of the reliability of the isolation substrate and solder interconnect to the changes of the design parameters are obtained and optimal designs are studied using response surface approximation and gradient optimization metho

    Multi-decadal trends in global terrestrial evapotranspiration and its components

    Get PDF
    Evapotranspiration (ET) is the process by which liquid water becomes water vapor and energetically this accounts for much of incoming solar radiation. If this ET did not occur temperatures would be higher, so understanding ET trends is crucial to predict future temperatures. Recent studies have reported prolonged declines in ET in recent decades, although these declines may relate to climate variability. Here, we used a well-validated diagnostic model to estimate daily ET during 1981–2012, and its three components: transpiration from vegetation (Et), direct evaporation from the soil (Es) and vaporization of intercepted rainfall from vegetation (Ei). During this period, ET over land has increased significantly (p < 0.01), caused by increases in Et and Ei, which are partially counteracted by Es decreasing. These contrasting trends are primarily driven by increases in vegetation leaf area index, dominated by greening. The overall increase in Et over land is about twofold of the decrease in Es. These opposing trends are not simulated by most Coupled Model Intercomparison Project phase 5 (CMIP5) models, and highlight the importance of realistically representing vegetation changes in earth system models for predicting future changes in the energy and water cycle

    Basic studies of baroclinic flows

    Get PDF
    Computations were completed of transition curves in the conventional annulus, including hysteresis effect. The model GEOSIM was used to compute the transition between axisymmetric flow and baroclinic wave flow in the conventional annulus experiments. Thorough testing and documentation of the GEOSIM code were also completed. The Spacelab 3 results from the Geophysical Fluid Flow Cell (GFFC) were reviewed and numerical modeling was performed of many of the cases with horizontal temperature gradients as well as heating from below, with different rates of rotation. A numerical study of the lower transition to axisymmetric flow in the baroclinic annulus was performed using GEOSIM

    Detection of TMPRSS2 : ERG fusion gene in circulating prostate cancer cells

    Get PDF
    Creative Commons Attribution-NonCommercial-Share Alike 3.0 license (CC BY-NC SA)Aim: To investigate the existence of TMPRSS2:ERG fusion gene in circulating tumor cells (CTC) from prostate cancer patients and its potential in monitoring tumor metastasis. Methods: We analyzed the frequency of TMPRSS2: ERG and TMPRSS2:ETV1 transcripts in 27 prostate cancer biopsies from prostatectomies, and TMPRSS2:ERG transcripts in CTC isolated from 15 patients with advanced androgen independent disease using reverse transcription polymerase chain reaction (RT-PCR). Fluorescence in situ hybridization (FISH) was applied to analyze the genomic truncation of ERG, which is the result of TMPRSS2:ERG fusion in 10 of the 15 CTC samples. Results: TMPRSS2: ERG transcripts were found in 44% of our samples, but we did not detect expression of TMPRSS2:ETV1. Using FISH analysis we detected chromosomal rearrangements affecting the ERG gene in 6 of 10 CTC samples, including 1 case with associated TMPRSS2:ERG fusion at the primary site. However, TMPRSS2:ERG transcripts were not detected in any of the 15 CTC samples, including the 10 cases analyzed by FISH. Conclusion: Although further study is required to address the association between TMPRSS2:ERG fusion and prostate cancer metastasis, detection of genomic truncation of the ERG gene by FISH analysis could be useful for monitoring the appearance of CTC and the potential for prostate cancer metastasis.Peer reviewedFinal Published versio
    corecore