116 research outputs found

    The mass distribution in an assembling super galaxy group at z=0.37z=0.37

    Get PDF
    We present a weak gravitational lensing analysis of supergroup SG1120-1202, consisting of four distinct X-ray-luminous groups, that will merge to form a cluster comparable in mass to Coma at z=0z=0. These groups lie within a projected separation of 1 to 4 Mpc and within Δv=550\Delta v=550 km s1^{-1} and form a unique protocluster to study the matter distribution in a coalescing system. Using high-resolution {\em HST}/ACS imaging, combined with an extensive spectroscopic and imaging data set, we study the weak gravitational distortion of background galaxy images by the matter distribution in the supergroup. We compare the reconstructed projected density field with the distribution of galaxies and hot X-ray emitting gas in the system and derive halo parameters for the individual density peaks. We show that the projected mass distribution closely follows the locations of the X-ray peaks and associated brightest group galaxies. One of the groups that lies at slightly lower redshift (z0.35z\approx 0.35) than the other three groups (z0.37z\approx 0.37) is X-ray luminous, but is barely detected in the gravitational lensing signal. The other three groups show a significant detection (up to 5σ5 \sigma in mass), with velocity dispersions between 35570+55355^{+55}_{-70} and 53055+45530^{+45}_{-55} km s1^{-1} and masses between 0.80.3+0.4×10140.8^{+0.4}_{-0.3} \times 10^{14} and 1.60.4+0.5×1014h1M1.6^{+0.5}_{-0.4}\times 10^{14} h^{-1} M_{\odot}, consistent with independent measurements. These groups are associated with peaks in the galaxy and gas density in a relatively straightforward manner. Since the groups show no visible signs of interaction, this supports the picture that we are catching the groups before they merge into a cluster.Comment: 10 pages, 10 figures, accepted for publication by Astronomy & Astrophysic

    CFHTLenS: Weak lensing constraints on the ellipticity of galaxy-scale matter haloes and the galaxy-halo misalignment

    Get PDF
    We present weak lensing constraints on the ellipticity of galaxy-scale matter haloes and the galaxy-halo misalignment. Using data from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS), we measure the weighted-average ratio of the aligned projected ellipticity components of galaxy matter haloes and their embedded galaxies, fhf_\mathrm{h}, split by galaxy type. We then compare our observations to measurements taken from the Millennium Simulation, assuming different models of galaxy-halo misalignment. Using the Millennium Simulation we verify that the statistical estimator used removes contamination from cosmic shear. We also detect an additional signal in the simulation, which we interpret as the impact of intrinsic shape-shear alignments between the lenses and their large-scale structure environment. These alignments are likely to have caused some of the previous observational constraints on fhf_\mathrm{h} to be biased high. From CFHTLenS we find fh=0.04±0.25f_\mathrm{h}=-0.04 \pm 0.25 for early-type galaxies, which is consistent with current models for the galaxy-halo misalignment predicting fh0.20f_\mathrm{h}\simeq 0.20. For late-type galaxies we measure fh=0.690.36+0.37f_\mathrm{h}=0.69_{-0.36}^{+0.37} from CFHTLenS. This can be compared to the simulated results which yield fh0.02f_\mathrm{h}\simeq 0.02 for misaligned late-type models.Comment: 21 pages, 3 tables, 9 figures. This replacement matches the version accepted for publication in MNRA

    The effect of the environment on the structure, morphology and star-formation history of intermediate-redshift galaxies

    Get PDF
    With the aim of understanding the effect of the environment on the star formation history and morphological transformation of galaxies, we present a detailed analysis of the colour, morphology and internal structure of cluster and field galaxies at 0.4≤z≤0.8. We use {\em HST} data for over 500 galaxies from the ESO Distant Cluster Survey (EDisCS) to quantify how the galaxies' light distribution deviate from symmetric smooth profiles. We visually inspect the galaxies' images to identify the likely causes for such deviations. We find that the residual flux fraction (RFF), which measures the fractional contribution to the galaxy light of the residuals left after subtracting a symmetric and smooth model, is very sensitive to the degree of structural disturbance but not the causes of such disturbance. On the other hand, the asymmetry of these residuals (Ares) is more sensitive to the causes of the disturbance, with merging galaxies having the highest values of Ares. Using these quantitative parameters we find that, at a fixed morphology, cluster and field galaxies show statistically similar degrees of disturbance. However, there is a higher fraction of symmetric and passive spirals in the cluster than in the field. These galaxies have smoother light distributions than their star-forming counterparts. We also find that while almost all field and cluster S0s appear undisturbed, there is a relatively small population of star-forming S0s in clusters but not in the field. These findings are consistent with relatively gentle environmental processes acting on galaxies infalling onto clusters

    CFHTLenS: Co-evolution of galaxies and their dark matter haloes

    Full text link
    Galaxy-galaxy weak lensing is a direct probe of the mean matter distribution around galaxies. The depth and sky coverage of the CFHT Legacy Survey yield statistically significant galaxy halo mass measurements over a much wider range of stellar masses (108.7510^{8.75} to 1011.3M10^{11.3} M_{\odot}) and redshifts (0.2<z<0.80.2 < z < 0.8) than previous weak lensing studies. At redshift z0.5z \sim 0.5, the stellar-to-halo mass ratio (SHMR) reaches a maximum of 4.0±0.24.0\pm0.2 percent as a function of halo mass at 1012.25M\sim 10^{12.25} M_{\odot}. We find, for the first time from weak lensing alone, evidence for significant evolution in the SHMR: the peak ratio falls as a function of cosmic time from 4.5±0.34.5 \pm 0.3 percent at z0.7z \sim 0.7 to 3.4±0.23.4 \pm 0.2 percent at z0.3z \sim 0.3, and shifts to lower stellar mass haloes. These evolutionary trends are dominated by red galaxies, and are consistent with a model in which the stellar mass above which star formation is quenched "downsizes" with cosmic time. In contrast, the SHMR of blue, star-forming galaxies is well-fit by a power law that does not evolve with time. This suggests that blue galaxies form stars at a rate that is balanced with their dark matter accretion in such a way that they evolve along the SHMR locus. The redshift dependence of the SHMR can be used to constrain the evolution of the galaxy population over cosmic time.Comment: 18 pages, MNRAS, in pres

    Spectroscopic confirmation of an ultra-faint galaxy at the epoch of reionization

    Get PDF
    Within one billion years of the Big Bang, intergalactic hydrogen was ionized by sources emitting ultraviolet and higher energy photons. This was the final phenomenon to globally affect all the baryons (visible matter) in the Universe. It is referred to as cosmic reionization and is an integral component of cosmology. It is broadly expected that intrinsically faint galaxies were the primary ionizing sources due to their abundance in this epoch. However, at the highest redshifts (z>7.5z>7.5; lookback time 13.1 Gyr), all galaxies with spectroscopic confirmations to date are intrinsically bright and, therefore, not necessarily representative of the general population. Here, we report the unequivocal spectroscopic detection of a low luminosity galaxy at z>7.5z>7.5. We detected the Lyman-α\alpha emission line at 10504\sim 10504 {\AA} in two separate observations with MOSFIRE on the Keck I Telescope and independently with the Hubble Space Telescope's slit-less grism spectrograph, implying a source redshift of z=7.640±0.001z = 7.640 \pm 0.001. The galaxy is gravitationally magnified by the massive galaxy cluster MACS J1423.8+2404 (z=0.545z = 0.545), with an estimated intrinsic luminosity of MAB=19.6±0.2M_{AB} = -19.6 \pm 0.2 mag and a stellar mass of M=3.00.8+1.5×108M_{\star} = 3.0^{+1.5}_{-0.8} \times 10^8 solar masses. Both are an order of magnitude lower than the four other Lyman-α\alpha emitters currently known at z>7.5z > 7.5, making it probably the most distant representative source of reionization found to date

    Weak lensing from space: first cosmological constraints from three-point shear statistics

    Full text link
    We use weak lensing data from the Hubble Space Telescope COSMOS survey to measure the second- and third-moments of the cosmic shear field, estimated from about 450,000 galaxies with average redshift ~ 1.3. We measure two- and three-point shear statistics using a tree-code, dividing the signal in E, B and mixed components. We present a detection of the third-order moment of the aperture mass statistic and verify that the measurement is robust against systematic errors caused by point spread function (PSF) residuals and by the intrinsic alignments between galaxies. The amplitude of the measured three-point cosmic shear signal is in very good agreement with the predictions for a WMAP7 best-fit model, whereas the amplitudes of potential systematics are consistent with zero. We make use of three sets of large Lambda CDM simulations to test the accuracy of the cosmological predictions and to estimate the influence of the cosmology-dependent covariance. We perform a likelihood analysis using the measurement and find that the Omega_m-sigma_8 degeneracy direction is well fitted by the relation: sigma_8 (Omega_m/0.30)^(0.49)=0.78+0.11/-0.26. We present the first measurement of a more generalised three-point shear statistic and find a very good agreement with the WMAP7 best-fit cosmology. The cosmological interpretation of this measurement gives sigma_8 (Omega_m/0.30)^(0.46)=0.69 +0.08/-0.14. Furthermore, the combined likelihood analysis of this measurement with the measurement of the second order moment of the aperture mass improves the accuracy of the cosmological constraints, showing the high potential of this combination of measurements to infer cosmological constraints.Comment: 17 pages, 11 figures. MNRAS submitte

    Measuring cosmological weak lensing using the Advanced Camera for Surveys on board the Hubble Space Telescope

    Get PDF
    Following from the theory of General Relativity, light-bundles are deflected and differentially distorted while passing through the gravitational potential of matter inhomogeneities. The gravitational lensing effect caused by the large-scale matter distribution in the Universe is termed cosmological weak lensing, and provides a powerful probe of cosmology. By studying the distortions which are imprinted onto the observed shapes of distant galaxies, the statistical properties of the foreground density field can be constrained free of assumptions on the relation between luminous and dark matter. Due to the weakness of the effect, it is challenging to measure and can only be detected statistically from large ensembles of coherently lensed galaxies. In addition, careful correction for systematic effects is required, first of all for the image point-spread-function (PSF). In this PhD thesis we present a detailed cosmological weak lensing analysis using deep high-resolution images from the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST). Including data from the ACS Parallel Cosmic Shear Survey, the HST/GEMS Survey, and the HST/COSMOS Survey, this data set constitutes the largest survey used to measure cosmological weak lensing from space today. In order to achieve the high accuracy required for weak lensing studies, we developed several upgrades for the data reduction pipeline including careful image registration, improved bad pixel masks, and an optimised weighting scheme. We also perform a thorough investigation of the ACS PSF and develop a new correction scheme for its spatial and temporal variations, which are caused by thermal breathing of the telescope. We present numerous tests of our shear measurement pipeline using simulated images from the STEP Programme, and demonstrate that it achieves a relative shear-measurement accuracy better than 2% for ACS-like images. We perform the analysis of the ACS data in two steps, starting with a pilot study, in which we test the capabilities of ACS for cosmological weak lensing measurements with early parallel observations and the combined GEMS and GOODS ACS mosaic of the Chandra Deep Field South (CDFS, 0.22 deg2). We perform a number of diagnostic tests indicating that the remaining level of systematics is consistent with zero for the GEMS and GOODS data confirming the success of our PSF correction scheme. For the parallel data we detect a low level of remaining systematics which we interpret to be caused by a lack of sufficient dithering of the data. Combining our shear estimate of the GEMS and GOODS observations using 96 galaxies arcmin-2 with the photometric redshift catalogue of the GOODS-MUSIC sample, we determine a local single field estimate for the mass power spectrum normalisation σ8=0.59+0.13-0.17(stat)±0.07(sys) (68% confidence assuming Gaussian sampling variance) at a fixed matter density Ωm=0.24 for a ΛCDM cosmology, where we marginalise over the uncertainty of the Hubble constant and the redshift distribution. This estimate agrees only marginally with the WMAP-3 result of σ8=0.761+0.049-0.048 (Spergel et al. 2007) and is significantly below values found by recent ground-based surveys. From this discrepancy we conclude that the CDFS is subject to strong sampling variance with a significant under-density of compact foreground structures. This is consistent with a recent study by Phleps et al. (2007), who find a strong deficiency of red galaxies in this field. In a second step we perform a preliminary cosmological weak lensing analysis of the HST/COSMOS Survey (1.64 deg2). The significantly increased statistical accuracy reveals previously undetectable residual systematic errors indicated by a significant B-mode signal. So far we have not been able to unambiguously identify their origin, but note that similar indications for remaining systematics have been found in an independent analysis of the same data by Massey et al. (2007). Using only B-mode-free scales (>1' in the shear two-point correlation function), we find σ8 = 0.71±0.09 (68% confidence) from COSMOS for a flat ΛCDM cosmology and fixed Ωm=0.24, where the error includes the uncertainties in the redshift distribution, the Hubble constant, and the shear calibration, as well as a Gaussian estimate for sampling variance. This result is in excellent agreement with the WMAP-3 constraints, but is significantly below the estimates found by Massey et al. (2007). In addition to the cosmological weak lensing analysis we present a reconstruction of the projected mass in the COSMOS field, as well as first results from a weak lensing analysis of the HST/STAGES Survey targeting the galaxy super-cluster Abell 901/902. Furthermore, we briefly summarise ACS studies of galaxy clusters, which make use of the developed data reduction and weak lensing pipeline

    Strong Lensing Model of SPT-CLJ0356-5337, a Major Merger Candidate at Redshift 1.0359

    Full text link
    We present an analysis of the mass distribution inferred from strong lensing by SPT-CL J0356-5337, a cluster of galaxies at redshift z = 1.0359 revealed in the follow-up of the SPT-SZ clusters. The cluster has an Einstein radius of Erad=14 for a source at z = 3 and a mass within 500 kpc of M_500kpc = 4.0+-0.8x10^14Msol. Our spectroscopic identification of three multiply-imaged systems (z = 2.363, z = 2.364, and z = 3.048), combined with HST F606W-band imaging allows us to build a strong lensing model for this cluster with an rms of <0.3'' between the predicted and measured positions of the multiple images. Our modeling reveals a two-component mass distribution in the cluster. One mass component is dominated by the brightest cluster galaxy and the other component, separated by ~170 kpc, contains a group of eight red elliptical galaxies confined in a ~9'' (~70 kpc) diameter circle. We estimate the mass ratio between the two components to be between 1:1.25 and 1:1.58. In addition, spectroscopic data reveal that these two near-equal mass cores have only a small velocity difference of 300 km/s between the two components. This small radial velocity difference suggests that most of the relative velocity takes place in the plane of the sky, and implies that SPT-CL J0356-5337 is a major merger with a small impact parameter seen face-on. We also assess the relative contributions of galaxy-scale halos to the overall mass of the core of the cluster and find that within 800 kpc from the brightest cluster galaxy about 27% of the total mass can be attributed to visible and dark matter associated with galaxies, whereas only 73% of the total mass in the core comes from cluster-scale dark matter halos.Comment: 19 pages, 11 figures. Submitted to Ap

    CFHTLenS: A Weak Lensing Shear Analysis of the 3D-Matched-Filter Galaxy Clusters

    Get PDF
    We present the cluster mass-richness scaling relation calibrated by a weak lensing analysis of >18000 galaxy cluster candidates in the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). Detected using the 3D-Matched-Filter cluster-finder of Milkeraitis et al., these cluster candidates span a wide range of masses, from the small group scale up to 1015M\sim10^{15} M_{\odot}, and redshifts 0.2 z\lesssim z\lesssim 0.9. The total significance of the stacked shear measurement amounts to 54σ\sigma. We compare cluster masses determined using weak lensing shear and magnification, finding the measurements in individual richness bins to yield 1σ\sigma compatibility, but with magnification estimates biased low. This first direct mass comparison yields important insights for improving the systematics handling of future lensing magnification work. In addition, we confirm analyses that suggest cluster miscentring has an important effect on the observed 3D-MF halo profiles, and we quantify this by fitting for projected cluster centroid offsets, which are typically \sim 0.4 arcmin. We bin the cluster candidates as a function of redshift, finding similar cluster masses and richness across the full range up to zz \sim 0.9. We measure the 3D-MF mass-richness scaling relation M200=M0(N200/20)βM_{200} = M_0 (N_{200} / 20)^\beta. We find a normalization M0(2.70.4+0.5)×1013MM_0 \sim (2.7^{+0.5}_{-0.4}) \times 10^{13} M_{\odot}, and a logarithmic slope of β1.4±0.1\beta \sim 1.4 \pm 0.1, both of which are in 1σ\sigma agreement with results from the magnification analysis. We find no evidence for a redshift-dependence of the normalization. The CFHTLenS 3D-MF cluster catalogue is now available at cfhtlens.org.Comment: 3D-MF cluster catalog is NOW AVAILABLE at cfhtlens.org. Magnification-shear mass comparison in Figure 10. 19 pages, 10 figures. Accepted to MNRA
    corecore