116 research outputs found
The mass distribution in an assembling super galaxy group at
We present a weak gravitational lensing analysis of supergroup SG11201202,
consisting of four distinct X-ray-luminous groups, that will merge to form a
cluster comparable in mass to Coma at . These groups lie within a
projected separation of 1 to 4 Mpc and within km s and
form a unique protocluster to study the matter distribution in a coalescing
system.
Using high-resolution {\em HST}/ACS imaging, combined with an extensive
spectroscopic and imaging data set, we study the weak gravitational distortion
of background galaxy images by the matter distribution in the supergroup. We
compare the reconstructed projected density field with the distribution of
galaxies and hot X-ray emitting gas in the system and derive halo parameters
for the individual density peaks.
We show that the projected mass distribution closely follows the locations of
the X-ray peaks and associated brightest group galaxies. One of the groups that
lies at slightly lower redshift () than the other three groups
() is X-ray luminous, but is barely detected in the
gravitational lensing signal. The other three groups show a significant
detection (up to in mass), with velocity dispersions between
and km s and masses between
and , consistent with independent measurements. These groups are
associated with peaks in the galaxy and gas density in a relatively
straightforward manner. Since the groups show no visible signs of interaction,
this supports the picture that we are catching the groups before they merge
into a cluster.Comment: 10 pages, 10 figures, accepted for publication by Astronomy &
Astrophysic
CFHTLenS: Weak lensing constraints on the ellipticity of galaxy-scale matter haloes and the galaxy-halo misalignment
We present weak lensing constraints on the ellipticity of galaxy-scale matter
haloes and the galaxy-halo misalignment. Using data from the
Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS), we measure the
weighted-average ratio of the aligned projected ellipticity components of
galaxy matter haloes and their embedded galaxies, , split by
galaxy type. We then compare our observations to measurements taken from the
Millennium Simulation, assuming different models of galaxy-halo misalignment.
Using the Millennium Simulation we verify that the statistical estimator used
removes contamination from cosmic shear. We also detect an additional signal in
the simulation, which we interpret as the impact of intrinsic shape-shear
alignments between the lenses and their large-scale structure environment.
These alignments are likely to have caused some of the previous observational
constraints on to be biased high. From CFHTLenS we find
for early-type galaxies, which is consistent with
current models for the galaxy-halo misalignment predicting . For late-type galaxies we measure
from CFHTLenS. This can be compared to the simulated results which yield
for misaligned late-type models.Comment: 21 pages, 3 tables, 9 figures. This replacement matches the version
accepted for publication in MNRA
The effect of the environment on the structure, morphology and star-formation history of intermediate-redshift galaxies
With the aim of understanding the effect of the environment on the star formation history and morphological transformation of galaxies, we present a detailed analysis of the colour, morphology and internal structure of cluster and field galaxies at 0.4≤z≤0.8. We use {\em HST} data for over 500 galaxies from the ESO Distant Cluster Survey (EDisCS) to quantify how the galaxies' light distribution deviate from symmetric smooth profiles. We visually inspect the galaxies' images to identify the likely causes for such deviations. We find that the residual flux fraction (RFF), which measures the fractional contribution to the galaxy light of the residuals left after subtracting a symmetric and smooth model, is very sensitive to the degree of structural disturbance but not the causes of such disturbance. On the other hand, the asymmetry of these residuals (Ares) is more sensitive to the causes of the disturbance, with merging galaxies having the highest values of Ares. Using these quantitative parameters we find that, at a fixed morphology, cluster and field galaxies show statistically similar degrees of disturbance. However, there is a higher fraction of symmetric and passive spirals in the cluster than in the field. These galaxies have smoother light distributions than their star-forming counterparts. We also find that while almost all field and cluster S0s appear undisturbed, there is a relatively small population of star-forming S0s in clusters but not in the field. These findings are consistent with relatively gentle environmental processes acting on galaxies infalling onto clusters
CFHTLenS: Co-evolution of galaxies and their dark matter haloes
Galaxy-galaxy weak lensing is a direct probe of the mean matter distribution
around galaxies. The depth and sky coverage of the CFHT Legacy Survey yield
statistically significant galaxy halo mass measurements over a much wider range
of stellar masses ( to ) and redshifts () than previous weak lensing studies. At redshift , the
stellar-to-halo mass ratio (SHMR) reaches a maximum of percent as a
function of halo mass at . We find, for the first
time from weak lensing alone, evidence for significant evolution in the SHMR:
the peak ratio falls as a function of cosmic time from percent at
to percent at , and shifts to lower
stellar mass haloes. These evolutionary trends are dominated by red galaxies,
and are consistent with a model in which the stellar mass above which star
formation is quenched "downsizes" with cosmic time. In contrast, the SHMR of
blue, star-forming galaxies is well-fit by a power law that does not evolve
with time. This suggests that blue galaxies form stars at a rate that is
balanced with their dark matter accretion in such a way that they evolve along
the SHMR locus. The redshift dependence of the SHMR can be used to constrain
the evolution of the galaxy population over cosmic time.Comment: 18 pages, MNRAS, in pres
Spectroscopic confirmation of an ultra-faint galaxy at the epoch of reionization
Within one billion years of the Big Bang, intergalactic hydrogen was ionized
by sources emitting ultraviolet and higher energy photons. This was the final
phenomenon to globally affect all the baryons (visible matter) in the Universe.
It is referred to as cosmic reionization and is an integral component of
cosmology. It is broadly expected that intrinsically faint galaxies were the
primary ionizing sources due to their abundance in this epoch. However, at the
highest redshifts (; lookback time 13.1 Gyr), all galaxies with
spectroscopic confirmations to date are intrinsically bright and, therefore,
not necessarily representative of the general population. Here, we report the
unequivocal spectroscopic detection of a low luminosity galaxy at . We
detected the Lyman- emission line at {\AA} in two separate
observations with MOSFIRE on the Keck I Telescope and independently with the
Hubble Space Telescope's slit-less grism spectrograph, implying a source
redshift of . The galaxy is gravitationally magnified by
the massive galaxy cluster MACS J1423.8+2404 (), with an estimated
intrinsic luminosity of mag and a stellar mass of
solar masses. Both are an order of
magnitude lower than the four other Lyman- emitters currently known at
, making it probably the most distant representative source of
reionization found to date
Weak lensing from space: first cosmological constraints from three-point shear statistics
We use weak lensing data from the Hubble Space Telescope COSMOS survey to
measure the second- and third-moments of the cosmic shear field, estimated from
about 450,000 galaxies with average redshift ~ 1.3. We measure two- and
three-point shear statistics using a tree-code, dividing the signal in E, B and
mixed components. We present a detection of the third-order moment of the
aperture mass statistic and verify that the measurement is robust against
systematic errors caused by point spread function (PSF) residuals and by the
intrinsic alignments between galaxies. The amplitude of the measured
three-point cosmic shear signal is in very good agreement with the predictions
for a WMAP7 best-fit model, whereas the amplitudes of potential systematics are
consistent with zero. We make use of three sets of large Lambda CDM simulations
to test the accuracy of the cosmological predictions and to estimate the
influence of the cosmology-dependent covariance. We perform a likelihood
analysis using the measurement and find that the Omega_m-sigma_8 degeneracy
direction is well fitted by the relation: sigma_8
(Omega_m/0.30)^(0.49)=0.78+0.11/-0.26. We present the first measurement of a
more generalised three-point shear statistic and find a very good agreement
with the WMAP7 best-fit cosmology. The cosmological interpretation of this
measurement gives sigma_8 (Omega_m/0.30)^(0.46)=0.69 +0.08/-0.14. Furthermore,
the combined likelihood analysis of this measurement with the measurement of
the second order moment of the aperture mass improves the accuracy of the
cosmological constraints, showing the high potential of this combination of
measurements to infer cosmological constraints.Comment: 17 pages, 11 figures. MNRAS submitte
Measuring cosmological weak lensing using the Advanced Camera for Surveys on board the Hubble Space Telescope
Following from the theory of General Relativity, light-bundles are deflected and differentially distorted while passing through the gravitational potential of matter inhomogeneities. The gravitational lensing effect caused by the large-scale matter distribution in the Universe is termed cosmological weak lensing, and provides a powerful probe of cosmology. By studying the distortions which are imprinted onto the observed shapes of distant galaxies, the statistical properties of the foreground density field can be constrained free of assumptions on the relation between luminous and dark matter. Due to the weakness of the effect, it is challenging to measure and can only be detected statistically from large ensembles of coherently lensed galaxies. In addition, careful correction for systematic effects is required, first of all for the image point-spread-function (PSF). In this PhD thesis we present a detailed cosmological weak lensing analysis using deep high-resolution images from the Advanced Camera for Surveys (ACS) on board the Hubble Space Telescope (HST). Including data from the ACS Parallel Cosmic Shear Survey, the HST/GEMS Survey, and the HST/COSMOS Survey, this data set constitutes the largest survey used to measure cosmological weak lensing from space today. In order to achieve the high accuracy required for weak lensing studies, we developed several upgrades for the data reduction pipeline including careful image registration, improved bad pixel masks, and an optimised weighting scheme. We also perform a thorough investigation of the ACS PSF and develop a new correction scheme for its spatial and temporal variations, which are caused by thermal breathing of the telescope. We present numerous tests of our shear measurement pipeline using simulated images from the STEP Programme, and demonstrate that it achieves a relative shear-measurement accuracy better than 2% for ACS-like images. We perform the analysis of the ACS data in two steps, starting with a pilot study, in which we test the capabilities of ACS for cosmological weak lensing measurements with early parallel observations and the combined GEMS and GOODS ACS mosaic of the Chandra Deep Field South (CDFS, 0.22 deg2). We perform a number of diagnostic tests indicating that the remaining level of systematics is consistent with zero for the GEMS and GOODS data confirming the success of our PSF correction scheme. For the parallel data we detect a low level of remaining systematics which we interpret to be caused by a lack of sufficient dithering of the data. Combining our shear estimate of the GEMS and GOODS observations using 96 galaxies arcmin-2 with the photometric redshift catalogue of the GOODS-MUSIC sample, we determine a local single field estimate for the mass power spectrum normalisation σ8=0.59+0.13-0.17(stat)±0.07(sys) (68% confidence assuming Gaussian sampling variance) at a fixed matter density Ωm=0.24 for a ΛCDM cosmology, where we marginalise over the uncertainty of the Hubble constant and the redshift distribution. This estimate agrees only marginally with the WMAP-3 result of σ8=0.761+0.049-0.048 (Spergel et al. 2007) and is significantly below values found by recent ground-based surveys. From this discrepancy we conclude that the CDFS is subject to strong sampling variance with a significant under-density of compact foreground structures. This is consistent with a recent study by Phleps et al. (2007), who find a strong deficiency of red galaxies in this field. In a second step we perform a preliminary cosmological weak lensing analysis of the HST/COSMOS Survey (1.64 deg2). The significantly increased statistical accuracy reveals previously undetectable residual systematic errors indicated by a significant B-mode signal. So far we have not been able to unambiguously identify their origin, but note that similar indications for remaining systematics have been found in an independent analysis of the same data by Massey et al. (2007). Using only B-mode-free scales (>1' in the shear two-point correlation function), we find σ8 = 0.71±0.09 (68% confidence) from COSMOS for a flat ΛCDM cosmology and fixed Ωm=0.24, where the error includes the uncertainties in the redshift distribution, the Hubble constant, and the shear calibration, as well as a Gaussian estimate for sampling variance. This result is in excellent agreement with the WMAP-3 constraints, but is significantly below the estimates found by Massey et al. (2007). In addition to the cosmological weak lensing analysis we present a reconstruction of the projected mass in the COSMOS field, as well as first results from a weak lensing analysis of the HST/STAGES Survey targeting the galaxy super-cluster Abell 901/902. Furthermore, we briefly summarise ACS studies of galaxy clusters, which make use of the developed data reduction and weak lensing pipeline
Strong Lensing Model of SPT-CLJ0356-5337, a Major Merger Candidate at Redshift 1.0359
We present an analysis of the mass distribution inferred from strong lensing
by SPT-CL J0356-5337, a cluster of galaxies at redshift z = 1.0359 revealed in
the follow-up of the SPT-SZ clusters. The cluster has an Einstein radius of
Erad=14 for a source at z = 3 and a mass within 500 kpc of M_500kpc =
4.0+-0.8x10^14Msol. Our spectroscopic identification of three multiply-imaged
systems (z = 2.363, z = 2.364, and z = 3.048), combined with HST F606W-band
imaging allows us to build a strong lensing model for this cluster with an rms
of <0.3'' between the predicted and measured positions of the multiple images.
Our modeling reveals a two-component mass distribution in the cluster. One mass
component is dominated by the brightest cluster galaxy and the other component,
separated by ~170 kpc, contains a group of eight red elliptical galaxies
confined in a ~9'' (~70 kpc) diameter circle. We estimate the mass ratio
between the two components to be between 1:1.25 and 1:1.58. In addition,
spectroscopic data reveal that these two near-equal mass cores have only a
small velocity difference of 300 km/s between the two components. This small
radial velocity difference suggests that most of the relative velocity takes
place in the plane of the sky, and implies that SPT-CL J0356-5337 is a major
merger with a small impact parameter seen face-on. We also assess the relative
contributions of galaxy-scale halos to the overall mass of the core of the
cluster and find that within 800 kpc from the brightest cluster galaxy about
27% of the total mass can be attributed to visible and dark matter associated
with galaxies, whereas only 73% of the total mass in the core comes from
cluster-scale dark matter halos.Comment: 19 pages, 11 figures. Submitted to Ap
CFHTLenS: A Weak Lensing Shear Analysis of the 3D-Matched-Filter Galaxy Clusters
We present the cluster mass-richness scaling relation calibrated by a weak
lensing analysis of >18000 galaxy cluster candidates in the
Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). Detected using the
3D-Matched-Filter cluster-finder of Milkeraitis et al., these cluster
candidates span a wide range of masses, from the small group scale up to
, and redshifts 0.2 0.9. The total
significance of the stacked shear measurement amounts to 54. We compare
cluster masses determined using weak lensing shear and magnification, finding
the measurements in individual richness bins to yield 1 compatibility,
but with magnification estimates biased low. This first direct mass comparison
yields important insights for improving the systematics handling of future
lensing magnification work. In addition, we confirm analyses that suggest
cluster miscentring has an important effect on the observed 3D-MF halo
profiles, and we quantify this by fitting for projected cluster centroid
offsets, which are typically 0.4 arcmin. We bin the cluster candidates
as a function of redshift, finding similar cluster masses and richness across
the full range up to 0.9. We measure the 3D-MF mass-richness scaling
relation . We find a normalization , and a logarithmic slope of
, both of which are in 1 agreement with results
from the magnification analysis. We find no evidence for a redshift-dependence
of the normalization. The CFHTLenS 3D-MF cluster catalogue is now available at
cfhtlens.org.Comment: 3D-MF cluster catalog is NOW AVAILABLE at cfhtlens.org.
Magnification-shear mass comparison in Figure 10. 19 pages, 10 figures.
Accepted to MNRA
- …
