1,442 research outputs found
Resonant photon absorption and hole burning in Cr7Ni antiferromagnetic rings
Presented are magnetization measurements on a crystal of Cr7Ni
antiferromagnetic rings. Irradiation with microwaves at frequencies between 1
and 10 GHz leads to observation of very narrow resonant photon absorption lines
which are mainly broadened by hyperfin interactions. A two-pulse hole burning
technique allowed us to estimate the characteristic energy diffusion time.Comment: 4 pages, 5 figure
A cationic and ferromagnetic hexametallic Mn(III) single-molecule magnet based on the salicylamidoxime ligand
g-engineering in hybrid rotaxanes to create AB and AB2 electron spin systems: EPR spectroscopic studies of weak interactions between dissimilar electron spin qubits
Hybrid [2]rotaxanes and pseudorotaxanes are reported where the magnetic interaction between dissimilar spins is controlled to create AB and AB2 electron spin systems,allowing independent control of weakly interacting S =1=2 centers
Molecular engineering of antiferromagnetic rings for quantum computation
The substitution of one metal ion in a Cr-based molecular ring with dominant
antiferromagnetic couplings allows to engineer its level structure and
ground-state degeneracy. Here we characterize a Cr7Ni molecular ring by means
of low-temperature specific-heat and torque-magnetometry measurements, thus
determining the microscopic parameters of the corresponding spin Hamiltonian.
The energy spectrum and the suppression of the leakage-inducing S-mixing render
the Cr7Ni molecule a suitable candidate for the qubit implementation, as
further substantiated by our quantum-gate simulations.Comment: To appear in Physical Review Letter
Spin dynamics of heterometallic Cr7M wheels (M = Mn, Zn, Ni) probed by inelastic neutron scattering
Inelastic neutron scattering has been applied to the study of the spin
dynamics of Cr-based antiferromagnetic octanuclear rings where a finite total
spin of the ground state is obtained by substituting one Cr(III) ion (s = 3/2)
with Zn (s = 0), Mn (s = 5/2) or Ni (s = 1) di-cations. Energy and intensity
measurements for several intra-multiplet and inter-multiplet magnetic
excitations allow us to determine the spin wavefunctions of the investigated
clusters. Effects due to the mixing of different spin multiplets have been
considered. Such effects proved to be important to correctly reproduce the
energy and intensity of magnetic excitations in the neutron spectra. On the
contrary to what is observed for the parent homonuclear Cr8 ring, the symmetry
of the first excited spin states is such that anticrossing conditions with the
ground state can be realized in the presence of an external magnetic field.
Heterometallic Cr7M wheels are therefore good candidates for macroscopic
observations of quantum effects.Comment: 9 pages, 11 figures, submitted to Phys. Rev. B, corrected typos and
added references, one sentence change
Microstrip Resonators and Broadband Lines for X-band EPR Spectroscopy of Molecular Nanomagnets
We present a practical setup to perform continuous-wave X-band
electron paramagnetic resonance spectroscopy by using planar microstrip lines and
general purpose instrumentation. We fabricated Ag/alumina and Nb/sapphire microstrip
resonators and transmission lines and compared their performance down to
2 K and under applied magnetic field. We used these devices to study single crystals
of molecular Cr3 nanomagnets. By means of X-band planar resonators we measured
angle-dependent spectra at fixed frequency, while broadband transmission lines
were used to measure continuous wave spectra with varying frequency in the range
2–25 GHz. The spectra acquired at low temperatures allowed to extract the essential
parameters of the low-lying energy levels of Cr3 and demonstrate that this method is
particularly suitable to study small crystals of molecular nanomagnets
Quantum spin coherence in halogen-modified Cr7Ni molecular nanomagnets
Among the factors determining the quantum coherence of the spin in molecular magnets are the presence and the nature of nuclear spins in the molecule. We have explored modifying the nuclear-spin environment in Cr7Ni-based molecular nanomagnets by replacing hydrogen atoms with deuterium or the halogen atoms, fluorine or chlorine. We find that the spin coherence, studied at low temperatures by pulsed electron-spin resonance, is modified by a range of factors, including nuclear spin and magnetic moment, changes in dynamics owing to nuclear mass, and molecular morphology changes
Oxo-centered carboxylate-bridged trinuclear complexes deposited on Au(111) by a mass-selective electrospray.
We developed an apparatus for nondestructive in vacuum deposition of mass-selected fragile Cr based metal trinuclear complexes, by modifying a commercial Mass Spectrometer containing an electrospray ionization source. Starting from a solution, this system creates a beam of ionized molecules which is then transferred into an evacuated region where the molecules can be mass selected before deposition. To verify the system efficiency, we deposited sub monolayers of oxo-centered carboxylate-bridged trinuclear complexes (Cr3 and Cr2Ni) on Au(111) surface. By XPS and STM we determined the deposited molecule stoichiometry and the surface coverage. The results show that this apparatus is works well for the in vacuum deposition of molecular nanomagnets and, thanks to its reduced dimensions, it is portable
- …
