3,140 research outputs found

    Nonlocal failures in complex supply networks by single link additions

    Full text link
    How do local topological changes affect the global operation and stability of complex supply networks? Studying supply networks on various levels of abstraction, we demonstrate that and how adding new links may not only promote but also degrade stable operation of a network. Intriguingly, the resulting overloads may emerge remotely from where such a link is added, thus resulting in nonlocal failure. We link this counter-intuitive phenomenon to Braess' paradox originally discovered in traffic networks. We use elementary network topologies to explain its underlying mechanism for different types of supply networks and find that it generically occurs across these systems. As an important consequence, upgrading supply networks such as communication networks, biological supply networks or power grids requires particular care because even adding only single connections may destabilize normal network operation and induce disturbances remotely from the location of structural change and even global cascades of failures.Comment: 12 pages, 10 figure

    Kuramoto dynamics in Hamiltonian systems

    Full text link
    The Kuramoto model constitutes a paradigmatic model for the dissipative collective dynamics of coupled oscillators, characterizing in particular the emergence of synchrony. Here we present a classical Hamiltonian (and thus conservative) system with 2N state variables that in its action-angle representation exactly yields Kuramoto dynamics on N-dimensional invariant manifolds. We show that the synchronization transition on a Kuramoto manifold emerges where the transverse Hamiltonian action dynamics becomes unstable. The uncovered Kuramoto dynamics in Hamiltonian systems thus distinctly links dissipative to conservative dynamics.Comment: 10 pages, 4 figure

    Inferring Network Topology from Complex Dynamics

    Full text link
    Inferring network topology from dynamical observations is a fundamental problem pervading research on complex systems. Here, we present a simple, direct method to infer the structural connection topology of a network, given an observation of one collective dynamical trajectory. The general theoretical framework is applicable to arbitrary network dynamical systems described by ordinary differential equations. No interference (external driving) is required and the type of dynamics is not restricted in any way. In particular, the observed dynamics may be arbitrarily complex; stationary, invariant or transient; synchronous or asynchronous and chaotic or periodic. Presupposing a knowledge of the functional form of the dynamical units and of the coupling functions between them, we present an analytical solution to the inverse problem of finding the network topology. Robust reconstruction is achieved in any sufficiently long generic observation of the system. We extend our method to simultaneously reconstruct both the entire network topology and all parameters appearing linear in the system's equations of motion. Reconstruction of network topology and system parameters is viable even in the presence of substantial external noise.Comment: 11 pages, 4 figure

    Self-supported aluminum thin films produced by vacuum deposition process

    Get PDF
    Self-supported aluminum thin film is produced by vacuum depositing the film on a polyvinyl formal resin film and then removing the resin by radiant heating in the vacuum. The aluminum film can be used as soon as the resin is eliminated

    Unstable attractors induce perpetual synchronization and desynchronization

    Full text link
    Common experience suggests that attracting invariant sets in nonlinear dynamical systems are generally stable. Contrary to this intuition, we present a dynamical system, a network of pulse-coupled oscillators, in which \textit{unstable attractors} arise naturally. From random initial conditions, groups of synchronized oscillators (clusters) are formed that send pulses alternately, resulting in a periodic dynamics of the network. Under the influence of arbitrarily weak noise, this synchronization is followed by a desynchronization of clusters, a phenomenon induced by attractors that are unstable. Perpetual synchronization and desynchronization lead to a switching among attractors. This is explained by the geometrical fact, that these unstable attractors are surrounded by basins of attraction of other attractors, whereas the full measure of their own basin is located remote from the attractor. Unstable attractors do not only exist in these systems, but moreover dominate the dynamics for large networks and a wide range of parameters.Comment: 14 pages, 12 figure

    Simple model for the Darwinian transition in early evolution

    Full text link
    It has been hypothesized that in the era just before the last universal common ancestor emerged, life on earth was fundamentally collective. Ancient life forms shared their genetic material freely through massive horizontal gene transfer (HGT). At a certain point, however, life made a transition to the modern era of individuality and vertical descent. Here we present a minimal model for this hypothesized "Darwinian transition." The model suggests that HGT-dominated dynamics may have been intermittently interrupted by selection-driven processes during which genotypes became fitter and decreased their inclination toward HGT. Stochastic switching in the population dynamics with three-point (hypernetwork) interactions may have destabilized the HGT-dominated collective state and led to the emergence of vertical descent and the first well-defined species in early evolution. A nonlinear analysis of a stochastic model dynamics covering key features of evolutionary processes (such as selection, mutation, drift and HGT) supports this view. Our findings thus suggest a viable route from early collective evolution to the start of individuality and vertical Darwinian evolution, enabling the emergence of the first species.Comment: 9 pages, 5 figures, under review at Physical Review

    Revealing networks from dynamics: an introduction

    Full text link
    What can we learn from the collective dynamics of a complex network about its interaction topology? Taking the perspective from nonlinear dynamics, we briefly review recent progress on how to infer structural connectivity (direct interactions) from accessing the dynamics of the units. Potential applications range from interaction networks in physics, to chemical and metabolic reactions, protein and gene regulatory networks as well as neural circuits in biology and electric power grids or wireless sensor networks in engineering. Moreover, we briefly mention some standard ways of inferring effective or functional connectivity.Comment: Topical review, 48 pages, 7 figure

    Long Chaotic Transients in Complex Networks

    Full text link
    We show that long chaotic transients dominate the dynamics of randomly diluted networks of pulse-coupled oscillators. This contrasts with the rapid convergence towards limit cycle attractors found in networks of globally coupled units. The lengths of the transients strongly depend on the network connectivity and varies by several orders of magnitude, with maximum transient lengths at intermediate connectivities. The dynamics of the transient exhibits a novel form of robust synchronization. An approximation to the largest Lyapunov exponent characterizing the chaotic nature of the transient dynamics is calculated analytically.Comment: 4 pages; 5 figure
    corecore