1,081 research outputs found

    Quantum wire networks with local Z2 symmetry

    Full text link
    For a large class of networks made of connected loops, in the presence of an external magnetic field of half flux quantum per loop, we show the existence of a large local symmetry group, generated by simultaneous flips of the electronic current in all the loops adjacent to a given node. Using an ultra-localized single particle basis adapted to this local Z_2 symmetry, we show that it is preserved by a large class of interaction potentials. As a main physical consequence, the only allowed tunneling processes in such networks are induced by electron-electron interactions and involve a simultaneous hop of two electrons. Using a mean-field picture and then a more systematic renormalization-group treatment, we show that these pair hopping processes do not generate a superconducting instability, but they destroy the Luttinger liquid behavior in the links, giving rise at low energy to a strongly correlated spin-density-wave state.Comment: 16 pages, 9 figures, v.2 section IV D added,accepted for publication in PR

    Theory of Incompressible States in a Narrow Channel

    Full text link
    We report on the properties of a system of interacting electrons in a narrow channel in the quantum Hall effect regime. It is shown that an increase in the strength of the Coulomb interaction causes abrupt changes in the width of the charge-density profile of translationally invariant states. We derive a phase diagram which includes many of the stable odd-denominator states as well as a novel fractional quantum Hall state at lowest half-filled Landau level. The collective mode evaluated at the half-filled case is strikingly similar to that for an odd-denominator fractional quantum Hall state.Comment: 4 pages, REVTEX, and 4 .ps file

    Theory, Simulation and Nanotechnological Applications of Adsorption on a Surface with Defects

    Get PDF
    Theory of adsorption on a surface with nanolocal defects is proposed. Two efficacy parameters of surface modification for nanotechnological purposes are introduced, where the modification is a creation of nanolocal artificial defects. The first parameter corresponds to applications where it is necessary to increase the concentration of certain particles on the modified surface. And the second one corresponds to the pattern transfer with the help of particle self-organization on the modified surface. The analytical expressions for both parameters are derived with the help of the thermodynamic and the kinetic approaches for two cases: jump diffusion and free motion of adsorbed particles over the surface. The possibility of selective adsorption of molecules is shown with the help of simulation of the adsorption of acetylene and benzene molecules in the pits on the graphite surface. The process of particle adsorption from the surface into the pit is theoretically studied by molecular dynamic technique. Some possible nanotechnological applications of adsorption on the surface with artificial defects are considered: fabrication of sensors for trace molecule detection, separation of isomers, and pattern transfer.Comment: 12 pages, 2 Postscript figures. Submitted to Surface Science (1998

    Hollow Gaussian Schell-model beam and its propagation

    Full text link
    In this paper, we present a new model, hollow Gaussian-Schell model beams (HGSMBs), to describe the practical dark hollow beams. An analytical propagation formula for HGSMBs passing through a paraxial first-order optical system is derived based on the theory of coherence. Based on the derived formula, an application example showing the influence of spatial coherence on the propagation of beams is illustrated. It is found that the beam propagating properties of HGSMBs will be greatly affected by their spatial coherence. Our model provides a very convenient way for analyzing the propagation properties of partially coherent dark hollow beams.Comment: 13pages, 2 figure

    Regular networks of Luttinger liquids

    Full text link
    We consider arrays of Luttinger liquids, where each node is described by a unitary scattering matrix. In the limit of small electron-electron interaction, we study the evolution of these scattering matrices as the high-energy single particle states are gradually integrated out. Interestingly, we obtain the same renormalization group equations as those derived by Lal, Rao, and Sen, for a system composed of a single node coupled to several semi-infinite 1D wires. The main difference between the single node geometry and a regular lattice is that in the latter case, the single particle spectrum is organized into periodic energy bands, so that the renormalization procedure has to stop when the last totally occupied band has been eliminated. We therefore predict a strongly renormalized Luttinger liquid behavior for generic filling factors, which should exhibit power-law suppression of the conductivity at low temperatures E_{F}/(k_{F}a) > 1. Some fully insulating ground-states are expected only for a discrete set of integer filling factors for the electronic system. A detailed discussion of the scattering matrix flow and its implication for the low energy band structure is given on the example of a square lattice.Comment: 16 pages, 7 figure

    Magnetoconductivity of Hubbard bands induced in Silicon MOSFETs

    Full text link
    Sodium impurities are diffused electrically to the oxide-semiconductor interface of a silicon MOSFET to create an impurity band. At low temperature and at low electron density, the band is split into an upper and a lower sections under the influence of Coulomb interactions. We used magnetoconductivity measurements to provide evidence for the existence of Hubbard bands and determine the nature of the states in each band.Comment: In press in Physica

    Global Anomalies and Anyons in 1+1 Dimensions

    Full text link
    We consider the analog in one spatial dimension of the Bose-Fermi transmutation for planar systems. A quantum mechanical system of a spin 1/2 particle coupled to an abelian gauge field, which is classically invariant under gauge transformations and charge conjugation is studied. It is found that unless the flux enclosed by the particle orbits is quantized, and the spin takes a value n+1/2n+ 1/2, at least one of the two symmetries would be anomalous. Thus, charge conjugation invariance and the existence of abelian instantons simultaneously force the particles to be either bosons or fermions, but not anyons.Comment: Changed title. To be published in Physics Letters

    Renormalization group study of the conductances of interacting quantum wire systems with different geometries

    Get PDF
    We examine the effect of interactions between the electrons on the conductances of some systems of quantum wires with different geometries. The systems include a wire with a stub in the middle, a wire containing a ring which can enclose a magnetic flux, and a system of four wires which are connected in the middle through a fifth wire. Each of the wires is taken to be a weakly interacting Tomonaga-Luttinger liquid, and scattering matrices are introduced at all the junctions. Using a renormalization group method developed recently for studying the flow of scattering matrices for interacting systems in one dimension, we compute the conductances of these systems as functions of the temperature and the wire lengths. We present results for all three regimes of interest, namely, high, intermediate and low temperature. These correspond respectively to the thermal coherence length being smaller than, comparable to and larger than the smallest wire length in the different systems, i.e., the length of the stub or each arm of the ring or the fifth wire. The renormalization group procedure and the formulae used to compute the conductances are different in the three regimes. We present a phenomenologically motivated formalism for studying the conductances in the intermediate regime where there is only partial coherence. At low temperatures, we study the line shapes of the conductances versus the electron energy near some of the resonances; the widths of the resonances go to zero with decreasing temperature. Our results show that the conductances of various systems of experimental interest depend on the temperature and lengths in a non-trivial way when interactions are taken into account.Comment: Revtex, 17 pages including 15 figure

    Analytical method for parameterizing the random profile components of nanosurfaces imaged by atomic force microscopy

    Full text link
    The functional properties of many technological surfaces in biotechnology, electronics, and mechanical engineering depend to a large degree on the individual features of their nanoscale surface texture, which in turn are a function of the surface manufacturing process. Among these features, the surface irregularities and self-similarity structures at different spatial scales, especially in the range of 1 to 100 nm, are of high importance because they greatly affect the surface interaction forces acting at a nanoscale distance. An analytical method for parameterizing the surface irregularities and their correlations in nanosurfaces imaged by atomic force microscopy (AFM) is proposed. In this method, flicker noise spectroscopy - a statistical physics approach - is used to develop six nanometrological parameters characterizing the high-frequency contributions of jump- and spike-like irregularities into the surface texture. These contributions reflect the stochastic processes of anomalous diffusion and inertial effects, respectively, in the process of surface manufacturing. The AFM images of the texture of corrosion-resistant magnetite coatings formed on low-carbon steel in hot nitrate solutions with coating growth promoters at different temperatures are analyzed. It is shown that the parameters characterizing surface spikiness are able to quantify the effect of process temperature on the corrosion resistance of the coatings. It is suggested that these parameters can be used for predicting and characterizing the corrosion-resistant properties of magnetite coatings.Comment: 7 pages, 3 figures, 2 tables; to be published in Analys

    Localization in the quantum Hall regime

    Full text link
    The localization properties of electron states in the quantum Hall regime are reviewed. The random Landau model, the random matrix model, the tight-binding Peierls model, and the network model of Chalker and Coddington are introduced. Descriptions in terms of equivalent tight-binding Hamiltonians, and the 2D Dirac model, are outlined. Evidences for the universal critical behavior of the localization length are summarized. A short review of the supersymmetric critical field theory is provided. The interplay between edge states and bulk localization properties is investigated. For a system with finite width and with short-range randomness, a sudden breakdown of the two-point conductance from ne2/hne^{2}/h to 0 (nn integer) is predicted if the localization length exceeds the distance between the edges.Comment: 16 pages, to be published in Physica E, Proceedings of the Symposium "Quantum Hall Effect: Past, Present and Future
    corecore