25,442 research outputs found
A Generalized Jarque-Bera Test of Conditional Normality
We consider testing normality in a general class of models that admits nonlinear conditional mean and conditional variance functions. We derive the asymptotic distribution of the skewness and kurtosis coefficients of the model’s standardized residuals and propose an asymptotic x2 test of normality. This test simplifies to the Jarque-Bera test only when: (i) the conditional mean function contains an intercept term but does not depend on past errors, and (ii) the errors are conditionally homoskedastic. Beyond this context, it is shown that the Jarque-Bera test has size distortion but the proposed test does not.conditional heteroskedsaticity, conditional normality, Jarque-Bera test
Classification under Streaming Emerging New Classes: A Solution using Completely Random Trees
This paper investigates an important problem in stream mining, i.e.,
classification under streaming emerging new classes or SENC. The common
approach is to treat it as a classification problem and solve it using either a
supervised learner or a semi-supervised learner. We propose an alternative
approach by using unsupervised learning as the basis to solve this problem. The
SENC problem can be decomposed into three sub problems: detecting emerging new
classes, classifying for known classes, and updating models to enable
classification of instances of the new class and detection of more emerging new
classes. The proposed method employs completely random trees which have been
shown to work well in unsupervised learning and supervised learning
independently in the literature. This is the first time, as far as we know,
that completely random trees are used as a single common core to solve all
three sub problems: unsupervised learning, supervised learning and model update
in data streams. We show that the proposed unsupervised-learning-focused method
often achieves significantly better outcomes than existing
classification-focused methods
- …
