16,995 research outputs found
Long-term Blood Pressure Prediction with Deep Recurrent Neural Networks
Existing methods for arterial blood pressure (BP) estimation directly map the
input physiological signals to output BP values without explicitly modeling the
underlying temporal dependencies in BP dynamics. As a result, these models
suffer from accuracy decay over a long time and thus require frequent
calibration. In this work, we address this issue by formulating BP estimation
as a sequence prediction problem in which both the input and target are
temporal sequences. We propose a novel deep recurrent neural network (RNN)
consisting of multilayered Long Short-Term Memory (LSTM) networks, which are
incorporated with (1) a bidirectional structure to access larger-scale context
information of input sequence, and (2) residual connections to allow gradients
in deep RNN to propagate more effectively. The proposed deep RNN model was
tested on a static BP dataset, and it achieved root mean square error (RMSE) of
3.90 and 2.66 mmHg for systolic BP (SBP) and diastolic BP (DBP) prediction
respectively, surpassing the accuracy of traditional BP prediction models. On a
multi-day BP dataset, the deep RNN achieved RMSE of 3.84, 5.25, 5.80 and 5.81
mmHg for the 1st day, 2nd day, 4th day and 6th month after the 1st day SBP
prediction, and 1.80, 4.78, 5.0, 5.21 mmHg for corresponding DBP prediction,
respectively, which outperforms all previous models with notable improvement.
The experimental results suggest that modeling the temporal dependencies in BP
dynamics significantly improves the long-term BP prediction accuracy.Comment: To appear in IEEE BHI 201
In vitro bioaccessibility of calcium, iron and zinc from breads and bread spreads
The in vitro bioaccessibility of calcium, iron and zinc of breads added with different bread spreads was determined. The mineral contents were assessed by flame atomic absorption spectrophotometer and expressed in fresh weight (mg/100 g). For the mineral bioaccessibility determination, in vitro gastrointestinal digestion was applied. Among the bread samples, calcium content of wholemeal bread with chocolate hazelnut spread ranked the highest (159.96±0.869 mg/100 g). For iron, white bread with chocolate hazelnut spread (6.92±0.411 mg/100 g) showed highest iron content while for zinc, white bread with peanut butter was the highest (1.82±0.015 mg/100 g). For calcium bioaccessibility, white bread with orange marmalade ranked the highest (39.33±4.865%) while wholemeal bread with peanut butter (14.70±0.265%) showed the lowest. The application of orange marmalade spread onto wholemeal bread increased the iron bioaccessibility significantly (9.73±1.387%). The acidic properties attributed by organic acids found in orange marmalade may favour both calcium and iron absorption. The zinc bioaccessibility of white bread alone remained the highest (20.63±3.536%) while wholemeal bread added with peanut butter (5.90±1.137%) showed the lowest. Overall, the addition of bread spreads particularly peanut butter and chocolate hazelnut spread had increased mineral contents of the bread samples. However, the presence of mineral enhancers (organic acids) and inhibitors (phytate and polyphenols) played some significant role in influencing the mineral bioaccessibility
Exosomes: Versatile Nano Mediators of Immune Regulation.
One of many types of extracellular vesicles (EVs), exosomes are nanovesicle structures that are released by almost all living cells that can perform a wide range of critical biological functions. Exosomes play important roles in both normal and pathological conditions by regulating cell-cell communication in cancer, angiogenesis, cellular differentiation, osteogenesis, and inflammation. Exosomes are stable in vivo and they can regulate biological processes by transferring lipids, proteins, nucleic acids, and even entire signaling pathways through the circulation to cells at distal sites. Recent advances in the identification, production, and purification of exosomes have created opportunities to exploit these structures as novel drug delivery systems, modulators of cell signaling, mediators of antigen presentation, as well as biological targeting agents and diagnostic tools in cancer therapy. This review will examine the functions of immunocyte-derived exosomes and their roles in the immune response under physiological and pathological conditions. The use of immunocyte exosomes in immunotherapy and vaccine development is discussed
Biological Routes to Gold Nanoplates
Much effort has been devoted to the synthesis of gold nanoparticles with different shapes, including the zero-dimensional nanospheres, one dimensional nanorods, and two-dimensional nanoplates. Compared to zero or one dimensional nanostructures, the synthesis of two-dimensional nanostructures in high yield has always been more involved, often requiring complex and time-consuming steps such as morphology transformation from the nanospheres, or the seeded growth process. Herein we report a high yield method for gold nanoplate synthesis using the extract of unicellular green alga Chlorella vulgaris, which can be carried out under ambient conditions. More than 90% of the total nanoparticle population is of the platelet morphology, surpassing the previously reported value of 45%. The control of the anisotropic growth of different planes; as well as the lateral size, has also been partially optimized.Singapore-MIT Alliance (SMA
NLRP2 controls age-associated maternal fertility
Nucleotide-binding domain and leucine-rich repeat (NLR) proteins are well-known for their key roles in the immune system. Ectopically expressed NLRP2 in immortalized cell lines assembles an inflammasome and inhibits activation of the proinflammatory transcription factor NF-kappa B, but the physiological roles of NLRP2 are unknown. Here, we show that Nlrp2-deficient mice were born with expected Mendelian ratios and that Nlrp2 was dispensable for innate and adaptive immunity. The observation that Nlrp2 was exclusively expressed in oocytes led us to explore the role of Nlrp2 in parthenogenetic activation of oocytes. Remarkably, unlike oocytes of young adult Nlrp2-deficient mice, activated oocytes of mature adult mice developed slower and largely failed to reach the blastocyst stage. In agreement, we noted strikingly declining reproductive rates in vivo with progressing age of female Nlrp2-deficient mice. This work identifies Nlrp2 as a critical regulator of oocyte quality and suggests that NLRP2 variants with reduced activity may contribute to maternal age-associated fertility loss in humans
- …
