2,392 research outputs found
An Improved Modeling for Low-grade Organic Rankine Cycle Coupled with Optimization Design of Radial-inflow Turbine
This document is the Accepted Manuscript of the following article: Lijing Zhai, Guoqiang Xu, Jie Wen, Yongkai Quan, Jian Fu, Hongwei Wu, and Tingting Li, ‘An improved modeling for low-grade organic Rankine cycle coupled with optimization design of radial-inflow turbine’, Energy Conversion and Management, Vol. 153: 60-70, December 2017. Under embargo. Embargo end date: 10 October 2018. The final, published version is available online at DOI: https://doi.org/10.1016/j.enconman.2017.09.063. Published by Elsevier Ltd.Organic Rankine cycle (ORC) has been proven to be an effective and promising technology to convert low-grade heat energy into power, attracting rapidly growing interest in recent years. As the key component of the ORC system, turbine significantly influences the overall cycle performance and its efficiency also varies with different working fluids as well as in different operating conditions. However, turbine efficiency is generally assumed to be constant in the conventional cycle design. Aiming at this issue, this paper couples the ORC system design with the radial-inflow turbine design to investigate the thermodynamic performance of the ORC system and the aerodynamic characteristics of radial-inflow turbine simultaneously. The constrained genetic algorithm (GA) is used to optimize the radial-inflow turbine with attention to six design parameters, including degree of reaction, velocity ratio, loading coefficient, flow coefficient, ratio of wheel diameter, and rotational speed. The influence of heat source outlet temperature on the performance of the radial-inflow turbine and the ORC system with constant mass flow rate of the heat source and constant heat source inlet temperature is investigated for four kinds of working fluids. The net electrical powers achieved are from few tens kWs to one hundred kWs. The results show that the turbine efficiency decreases with increasing heat source outlet temperature and that the decreasing rate of turbine efficiency becomes faster in the high temperature region. The optimized turbine efficiency varies from 88.06% (using pentane at the outlet temperature of 105 ºC) to 91.01% (using R245fa at the outlet temperature of 80 ºC), which appears much higher compared to common values reported in the literature. Furthermore, the cycle efficiency increases monotonously with the growth of the heat source outlet temperature, whereas the net power output has the opposite trend. R123 achieves the maximum cycle efficiency of 12.21% at the heat source outlet temperature of 110 ºC. Based on the optimized results, the recommended ranges of the key design parameters for ORC radial-inflow turbine are presented as well.Peer reviewe
Breaking the Degeneracy: Optimal Use of Three-point Weak Lensing Statistics
We study the optimal use of third order statistics in the analysis of weak
lensing by large-scale structure. These higher order statistics have long been
advocated as a powerful tool to break measured degeneracies between
cosmological parameters. Using ray-tracing simulations, incorporating important
survey features such as a realistic depth-dependent redshift distribution, we
find that a joint two- and three-point correlation function analysis is a much
stronger probe of cosmology than the skewness statistic. We compare different
observing strategies, showing that for a limited survey time there is an
optimal depth for the measurement of third-order statistics, which balances
statistical noise and cosmic variance against signal amplitude. We find that
the chosen CFHTLS observing strategy was optimal and forecast that a joint two-
and three-point analysis of the completed CFHTLS-Wide will constrain the
amplitude of the matter power spectrum to 10% and the matter density
parameter to 17%, a factor of ~2.5 improvement on the two-point
analysis alone. Our error analysis includes all non-Gaussian terms, finding
that the coupling between cosmic variance and shot noise is a non-negligible
contribution which should be included in any future analytical error
calculations.Comment: 27 pages, 13 figures, 3 table
The Bioinformatics Analysis of Comparative Genomics of Mycobacterium tuberculosis Complex (MTBC) Provides Insight into Dissimilarities between Intraspecific Groups Differing in Host Association, Virulence, and Epitope Diversity
Value of Functionalized Superparamagnetic Iron Oxide Nanoparticles in the Diagnosis and Treatment of Acute Temporal Lobe Epilepsy on MRI
Purpose. Although active targeting of drugs using a magnetic-targeted drug delivery system (MTDS) with superparamagnetic iron oxide nanoparticles (SPIONs) is a very effective treatment approach for tumors and other illnesses, successful results of drug-resistant temporal lobe epilepsy (TLE) are unprecedented. A hallmark in the neuropathology of TLE is brain inflammation, in particular the activation of interleukin-1β (IL-1β) induced by activated glial cells, which has been considered a new mechanistic target for treatment. The purpose of this study was to determine the feasibility of the functionalized SPIONs with anti-IL-1β monoclonal antibody (mAb) attached to render MRI diagnoses and simultaneously provide targeted therapy with the neutralization of IL-1β overexpressed in epileptogenic zone of an acute rat model of TLE. Experimental Design. The anti-IL-1β mAb-SPIONs were studied in vivo versus plain SPIONs and saline. Lithium-chloride pilocarpine-induced TLE models (n=60) were followed by Western blot, Perl’s iron staining, Nissl staining, and immunofluorescent double-label staining after MRI examination. Results. The magnetic anti-IL-1β mAb-SPION administered intravenously, which crossed the BBB and was concentrated in the astrocytes and neurons in epileptogenic tissues, rendered these tissues visible on MRI and simultaneously delivered anti-IL-1β mAb to the epileptogenic focus. Conclusions. Our study provides the first evidence that the novel approach enhanced accumulation and the therapeutic effect of anti-IL-1β mAb by MTDS using SPIONs
- …
