2,863 research outputs found
The role of inhibitory G proteins and regulators of G protein signaling in the in vivo control of heart rate and predisposition to cardiac arrhythmias
Inhibitory heterotrimeric G proteins and the control of heart rate. The activation of cell signaling pathways involving inhibitory heterotrimeric G proteins acts to slow the heart rate via modulation of ion channels. A large number of Regulators of G protein signalings (RGSs) can act as GTPase accelerating proteins to inhibitory G proteins and thus it is important to understand the network of RGS\G-protein interaction. We will review our recent findings on in vivo heart rate control in mice with global genetic deletion of various inhibitory G protein alpha subunits. We will discuss potential central and peripheral contributions to the phenotype and the controversies in the literature
What Does Clustering Tell Us About the Buildup of the Red Sequence?
We analyze the clustering of red and blue galaxies from four samples spanning
a redshift range of 0.4<z<2.0 to test the various scenarios by which galaxies
evolve onto the red sequence. The data are taken from the UKIDSS Ultra Deep
Survey, DEEP2, and COMBO-17. The use of clustering allows us to determine what
fraction of the red sequence is made up of central galaxies and satellite
galaxies. At all redshifts, including z=0, the data are consistent with ~60% of
satellite galaxies being red or quenched, implying that ~1/3 of the red
sequence is comprised of satellite galaxies. More than three-fourths of red
satellite galaxies were moved to the red sequence after they were accreted onto
a larger halo. The constant fraction of satellite galaxies that are red yields
a quenching time for satellite galaxies that depends on redshift in the same
way as halo dynamical times; t_Q ~ (1+z)^{-1.5}. In three of the four samples,
the data favor a model in which red central galaxies are a random sample of all
central galaxies; there is no preferred halo mass scale at which galaxies make
the transition from star-forming to red and dead. The large errors on the
fourth sample inhibit any conclusions. Theoretical models in which star
formation is quenched above a critical halo mass are excluded by these data. A
scenario in which mergers create red central galaxies imparts a weaker
correlation between halo mass and central galaxy color, but even the merger
scenario creates tension with red galaxy clustering at redshifts above 0.5.
These results suggest that the mechanism by which central galaxies become red
evolves from z=0.5 to z=0.Comment: 18 emulateapj pages, 13 figures. submitted to Ap
Where do "red and dead" early-type void galaxies come from?
Void regions of the Universe offer a special environment for studying
cosmology and galaxy formation, which may expose weaknesses in our
understanding of these phenomena. Although galaxies in voids are observed to be
predominately gas rich, star forming and blue, a sub-population of bright red
void galaxies can also be found, whose star formation was shut down long ago.
Are the same processes that quench star formation in denser regions of the
Universe also at work in voids?
We compare the luminosity function of void galaxies in the 2dF Galaxy
Redshift Survey, to those from a galaxy formation model built on the Millennium
Simulation. We show that a global star formation suppression mechanism in the
form of low luminosity "radio mode" AGN heating is sufficient to reproduce the
observed population of void early-types. Radio mode heating is environment
independent other than its dependence on dark matter halo mass, where, above a
critical mass threshold of approximately M_vir~10^12.5 M_sun, gas cooling onto
the galaxy is suppressed and star formation subsequently fades. In the
Millennium Simulation, the void halo mass function is shifted with respect to
denser environments, but still maintains a high mass tail above this critical
threshold. In such void halos, radio mode heating remains efficient and red
galaxies are found; collectively these galaxies match the observed space
density without any modification to the model. Consequently, galaxies living in
vastly different large-scale environments but hosted by halos of similar mass
are predicted to have similar properties, consistent with observations.Comment: 6 pages, 3 figures, accepted MNRA
Star Formation Quenching Timescale of Central Galaxies in a Hierarchical Universe
Central galaxies make up the majority of the galaxy population, including the
majority of the quiescent population at . Thus, the mechanism(s) responsible for quenching
central galaxies plays a crucial role in galaxy evolution as whole. We combine
a high resolution cosmological -body simulation with observed evolutionary
trends of the "star formation main sequence," quiescent fraction, and stellar
mass function at to construct a model that statistically tracks the
star formation histories and quenching of central galaxies. Comparing this
model to the distribution of central galaxy star formation rates in a group
catalog of the SDSS Data Release 7, we constrain the timescales over which
physical processes cease star formation in central galaxies. Over the stellar
mass range to we infer quenching
e-folding times that span to with more massive
central galaxies quenching faster. For , this implies a total migration time of from the star formation main sequence to quiescence. Compared
to satellites, central galaxies take longer to quench
their star formation, suggesting that different mechanisms are responsible for
quenching centrals versus satellites. Finally, the central galaxy quenching
timescale we infer provides key constraints for proposed star formation
quenching mechanisms. Our timescale is generally consistent with gas depletion
timescales predicted by quenching through strangulation. However, the exact
physical mechanism(s) responsible for this still remain unclear.Comment: 16 pages, 11 figure
Foam rigidized inflatable structural assemblies
An inflatable and rigidizable structure for use as a habitat or a load bearing structure is disclosed. The structure consists of an outer wall and an inner wall defining a containment member and a bladder. The bladder is pressurized to erect the structure from an initially collapsed state. The containment member is subsequently injected with rigidizable fluid through an arrangement of injection ports. Exhaust gases from the curing rigidizable fluid are vented through an arrangement of exhaust ports. The rate of erection can be controlled by frictional engagement with a container or by using a tether. A method for fabricating a tubular structure is disclosed
Cosmological Constraints from Galaxy Clustering and the Mass-to-Number Ratio of Galaxy Clusters
We place constraints on the average density (Omega_m) and clustering
amplitude (sigma_8) of matter using a combination of two measurements from the
Sloan Digital Sky Survey: the galaxy two-point correlation function, w_p, and
the mass-to-galaxy-number ratio within galaxy clusters, M/N, analogous to
cluster M/L ratios. Our w_p measurements are obtained from DR7 while the sample
of clusters is the maxBCG sample, with cluster masses derived from weak
gravitational lensing. We construct non-linear galaxy bias models using the
Halo Occupation Distribution (HOD) to fit both w_p and M/N for different
cosmological parameters. HOD models that match the same two-point clustering
predict different numbers of galaxies in massive halos when Omega_m or sigma_8
is varied, thereby breaking the degeneracy between cosmology and bias. We
demonstrate that this technique yields constraints that are consistent and
competitive with current results from cluster abundance studies, even though
this technique does not use abundance information. Using w_p and M/N alone, we
find Omega_m^0.5*sigma_8=0.465+/-0.026, with individual constraints of
Omega_m=0.29+/-0.03 and sigma_8=0.85+/-0.06. Combined with current CMB data,
these constraints are Omega_m=0.290+/-0.016 and sigma_8=0.826+/-0.020. All
errors are 1-sigma. The systematic uncertainties that the M/N technique are
most sensitive to are the amplitude of the bias function of dark matter halos
and the possibility of redshift evolution between the SDSS Main sample and the
maxBCG sample. Our derived constraints are insensitive to the current level of
uncertainties in the halo mass function and in the mass-richness relation of
clusters and its scatter, making the M/N technique complementary to cluster
abundances as a method for constraining cosmology with future galaxy surveys.Comment: 23 pages, submitted to Ap
Inflatable Tubular Structures Rigidized with Foams
Inflatable tubular structures that have annular cross sections rigidized with foams, and the means of erecting such structures in the field, are undergoing development. Although the development effort has focused on lightweight structural booms to be transported in compact form and deployed in outer space, the principles of design and fabrication are also potentially applicable to terrestrial structures, including components of ultralightweight aircraft, lightweight storage buildings and shelters, lightweight insulation, and sales displays. The use of foams to deploy and harden inflatable structures was first proposed as early as the 1960s, and has been investigated in recent years by NASA, the U.S. Air Force Research Laboratory, industry, and academia. In cases of deployable booms, most of the investigation in recent years has focused on solid cross sections, because they can be constructed relatively easily. However, solid-section foam-filled booms can be much too heavy for some applications. In contrast, booms with annular cross sections according to the present innovation can be tailored to obtain desired combinations of stiffness and weight through choice of diameters, wall thicknesses, and foam densities. By far the most compelling advantage afforded by this innovation is the possibility of drastically reducing weights while retaining or increasing the stiffnesses, relative to comparable booms that have solid foamfilled cross sections. A typical boom according to this innovation includes inner and outer polyimide film sleeves to contain foam that is injected between them during deployment
Angular Momentum Evolution of Stars in the Orion Nebula Cluster
(Abridged) We present theoretical models of stellar angular momentum
evolution from the Orion Nebula Cluster (ONC) to the Pleiades and the Hyades.
We demonstrate that observations of the Pleiades and Hyades place tight
constraints on the angular momentum loss rate from stellar winds. The observed
periods, masses and ages of ONC stars in the range 0.2--0.5 M, and the
loss properties inferred from the Pleiades and Hyades stars, are then used to
test the initial conditions for stellar evolution models. We use these models
to estimate the distribution of rotational velocities for the ONC stars at the
age of the Pleiades (120 Myr). The modeled ONC and observed Pleiades
distributions of rotation rates are not consistent if only stellar winds are
included. In order to reconcile the observed loss of angu lar momentum between
these two clusters, an extrinsic loss mechanism such as protostar-accretion
disk interaction is required. Our model, which evolves the ONC stars with a
mass dependent saturation threshold normalized such that at 0.5 \m, and which includes a distribution of disk lifetimes
that is uniform over the range 0--6 Myr, is consistent with the Pleiades. This
model for disk-locking lifetimes is also consistent with inferred disk
lifetimes from the percentage of stars with infrared excesses observed in young
clusters. Different models, using a variety of initial period distributions and
different maximum disk lifetimes, are also compared to the Pleiades. For
disk-locking models that use a uniform distribution of disk lifetimes over the
range 0 to , the acceptable range of the maximum lifetime is Myr.Comment: 21 pages, 7 figures, submitted to Ap
- …
