134 research outputs found
Algebraic symmetries of generic dimensional periodic Costas arrays
In this work we present two generators for the group of symmetries of the
generic dimensional periodic Costas arrays over elementary abelian
groups: one that is defined by multiplication on
dimensions and the other by shear (addition) on dimensions. Through
exhaustive search we observe that these two generators characterize the group
of symmetries for the examples we were able to compute. Following the results,
we conjecture that these generators characterize the group of symmetries of the
generic dimensional periodic Costas arrays over elementary abelian
groups
Extended families of 2D arrays with near optimal auto and low cross-correlation
Families of 2D arrays can be constructed where each array has perfect autocorrelation, and the cross-correlation between any pair of family members is optimally low. We exploit equivalent Hadamard matrices to construct many families of p p × p arrays, where p is any 4k-1 prime. From these families, we assemble extended families of arrays with members that exhibit perfect autocorrelation and next-to-optimally low cross-correlation. Pseudo-Hadamard matrices are used to construct extended families using p = 4k + 1 primes. An optimal family of 31 31 × 31 perfect arrays can provide copyright protection to uniquely stamp a robust, low-visibility watermark within every frame of each second of high-definition, 30 fps video. The extended families permit the embedding of many more perfect watermarks that have next-to-minimal cross-correlations.</p
Optimized inspection capacity for out of control detection in semiconductor manufacturing
- …
