1,958 research outputs found

    A community of agents as a tool to optimize industrial districts logistics

    Get PDF
    The aim of this paper is to find an optimal solution to operational planning of freight transportation in an industrial district. We propose a system architecture that drives agents – the industrial district firms - to cooperate in logistic field, to minimize transport and environmental costs. The idea is to achieve logistics optimization setting up a community made of district enterprises, preserving a satisfactory level of system efficiency and fairness. We address the situation in which a virtual coordinator helps the agents to reach an agreement. The objectives are: maximizing customers satisfaction, and minimizing the number of trucks needed. A fuzzy clustering (FCM), two Fuzzy Inference System (FIS) combined with a Genetic Algorithm (GA), and a greedy algorithm are thus proposed to achieve these objectives, and eventually an algorithm to solve the Travelling Salesman Problem is also used. The proposed framework can be used to provide real time solutions to logistics management problems, and negative environmental impacts

    Preliminary findings from a survey on the MD state of the practice

    Get PDF
    In the context of an Italian research project, this paper reports on an on-line survey, performed with 155 software professionals, with the aim of investigating about their opinions and experiences in modeling during software development and Model-driven engineering usage. The survey focused also on used modeling languages, processes and tools. A preliminary analysis of the results confirmed that Model-driven engineering, and more in general software modeling, are very relevant phenomena. Approximately 68% of the sample use models during software development. Among then, 44% generate code starting from models and 16% execute them directly. The preferred language for modeling is UML but DSLs are used as wel

    Surface Response-based Behavioral Modeling of Accurate Digitizers: a Case Study on a Fast Digital Integrator at CERN

    Get PDF
    A statistical approach to behavioral modeling for assessing dynamic metrological performance during the concept design of accurate digitizers is proposed. A surface-response approach based on statistical experiment design is exploited for avoiding unrealistic hypothesis of linearity, optimizing simulation, exploring operating conditions systematically, as well as verifying identification and validation uncertainty. An actual case study on the dynamic metrological characterization of a Fast Digital Integrator for high-performance magnetic measurements at the European Organization for Nuclear Research (CERN) is presented

    Bessel beam illumination reduces random and systematic errors in quantitative functional studies using light-sheet microscopy

    Get PDF
    Light-sheet microscopy (LSM), in combination with intrinsically transparent zebrafish larvae, is a choice method to observe brain function with high frame rates at cellular resolution. Inherently to LSM, however, residual opaque objects cause stripe artifacts, which obscure features of interest and, during functional imaging, modulate fluorescence variations related to neuronal activity. Here, we report how Bessel beams reduce streaking artifacts and produce high-fidelity quantitative data demonstrating a fivefold increase in sensitivity to calcium transients and a 20 fold increase in accuracy in the detection of activity correlations in functional imaging. Furthermore, using principal component analysis, we show that measurements obtained with Bessel beams are clean enough to reveal in one-shot experiments correlations that can not be averaged over trials after stimuli as is the case when studying spontaneous activity. Our results not only demonstrate the contamination of data by systematic and random errors through conventional Gaussian illumination and but,furthermore, quantify the increase in fidelity of such data when using Bessel beams

    CD271 downregulation promotes melanoma progression and invasion in 3-dimensional models and in zebrafish

    Get PDF
    CD271 is a neurotrophin receptor variably expressed in melanoma. While contradictory data are reported on its role as a marker of tumor initiating cells, little is known on its function in tumor progression. CD271 expression was higher in spheroids derived from freshly isolated cells of primary melanomas and in primary WM115 and WM793-B cell lines, while it decreased during progression to advanced stages in cells isolated from metastatic melanomas and in metastatic WM266-4 and 1205Lu cell lines. Moreover, CD271 was scarcely detected in the highly invasive spheroids (SKMEL28 and 1205Lu). CD271, originally expressed in the epidermis of skin reconstructs, disappeared when melanoma started to invade the dermis. SKMEL8 CD271(-) cells showed greater proliferation and invasiveness in vitro, and were associated with a higher number of metastases in zebrafish, as compared to CD271(+) cells. CD271 silencing in WM115 induced a more aggressive phenotype in vitro and in vivo. On the contrary, CD271 overexpression in SKMEL28 cells reduced invasion in vitro, and CD271 overexpressing 1205Lu cells was associated with a lower percentage of metastases in zebrafish. A reduced cell-cell adhesion was also observed in absence of CD271. Taken together, these results indicate that CD271 loss is critical for melanoma progression and metastasis

    Optical mapping of neuronal activity during seizures in zebrafish

    Get PDF
    Mapping neuronal activity during the onset and propagation of epileptic seizures can provide a better understanding of the mechanisms underlying this pathology and improve our approaches to the development of new drugs. Recently, zebrafish has become an important model for studying epilepsy both in basic research and in drug discovery. Here, we employed a transgenic line with pan-neuronal expression of the genetically-encoded calcium indicator GCaMP6s to measure neuronal activity in zebrafish larvae during seizures induced by pentylenetretrazole (PTZ). With this approach, we mapped neuronal activity in different areas of the larval brain, demonstrating the high sensitivity of this method to different levels of alteration, as induced by increasing PTZ concentrations, and the rescuing effect of an anti-epileptic drug. We also present simultaneous measurements of brain and locomotor activity, as well as a high-throughput assay, demonstrating that GCaMP measurements can complement behavioural assays for the detection of subclinical epileptic seizures, thus enabling future investigations on human hypomorphic mutations and more effective drug screening methods. Notably, the methodology described here can be easily applied to the study of many human neuropathologies modelled in zebrafish, allowing a simple and yet detailed investigation of brain activity alterations associated with the pathological phenotype

    The down-regulation of pank2 gene in zebrafish as a model of Pantothenate Kinase Associated Neurodegeneration.

    Get PDF
    open9siThe increased iron deposition is a hallmark of many neurodegenerative diseases, but its pathogenic role is still unclear. A strong link between iron and neurodegeneration is evident in a set of heterogeneous neurological disorders, known as Neurodegeneration with Brain Iron Accumulation (NBIA). The most common form of inherited NBIA is associated with mutations in hPank2 gene (PKAN). Pank2 is the rate limiting enzyme in CoA biosynthesis and its downregulation in mammalian cells leads to perturbation of cellular iron homeostasis. Here we explore Pank2 biological function in Danio rerio, and propose this system as an important new tool for the study of PKAN disease.openZizioli, Daniela; Tiso, Natascia; Busolin, Giorgia; Khatri, Deepak; Giuliani, Roberta; Borsani, Giuseppe; Monti, Eugenio; Argenton, Francesco; Finazzi, DarioZizioli, Daniela; Tiso, Natascia; Busolin, Giorgia; Khatri, Deepak; Giuliani, Roberta; Borsani, Giuseppe; Monti, Eugenio; Argenton, Francesco; Finazzi, Dari

    Sox10 contributes to the balance of fate choice in dorsal root ganglion progenitors

    Get PDF
    The development of functional peripheral ganglia requires a balance of specification of both neuronal and glial components. In the developing dorsal root ganglia (DRGs), these compo- nents form from partially-restricted bipotent neuroglial precursors derived from the neural crest. Work in mouse and chick has identified several factors, including Delta/Notch signal- ing, required for specification of a balance of these components. We have previously shown in zebrafish that the Sry-related HMG domain transcription factor, Sox10, plays an unex- pected, but crucial, role in sensory neuron fate specification in vivo. In the same study we described a novel Sox10 mutant allele, sox10baz1, in which sensory neuron numbers are elevated above those of wild-types. Here we investigate the origin of this neurogenic pheno- type. We demonstrate that the supernumerary neurons are sensory neurons, and that enteric and sympathetic neurons are almost absent just as in classical sox10 null alleles; peripheral glial development is also severely abrogated in a manner similar to other sox10 mutant alleles. Examination of proliferation and apoptosis in the developing DRG reveals very low levels of both processes in wild-type and sox10baz1, excluding changes in the bal- ance of these as an explanation for the overproduction of sensory neurons. Using chemical inhibition of Delta-Notch-Notch signaling we demonstrate that in embryonic zebrafish, as in mouse and chick, lateral inhibition during the phase of trunk DRG development is required to achieve a balance between glial and neuronal numbers. Importantly, however, we show that this mechanism is insufficient to explain quantitative aspects of the baz1 phenotype. The Sox10(baz1) protein shows a single amino acid substitution in the DNA binding HMG domain; structural analysis indicates that this change is likely to result in reduced flexibility in the HMG domain, consistent with sequence-specific modification of Sox10 binding to DNA. Unlike other Sox10 mutant proteins, Sox10(baz1) retains an ability to drive neurogenin1 transcription. We show that overexpression of neurogenin1 is sufficient to produce supernu- merary DRG sensory neurons in a wild-type background, and can rescue the sensory neu- ron phenotype of sox10 morphants in a manner closely resembling the baz1 phenotype. We conclude that an imbalance of neuronal and glial fate specification results from the Sox10 (baz1) protein\u2019s unique ability to drive sensory neuron specification whilst failing to drive glial development. The sox10baz1 phenotype reveals for the first time that a Notch-dependent lat- eral inhibition mechanism is not sufficient to fully explain the balance of neurons and glia in the developing DRGs, and that a second Sox10-dependent mechanism is necessary. Sox10 is thus a key transcription factor in achieving the balance of sensory neuronal and glial fates
    corecore