416 research outputs found

    And Her Mother Came Too!

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/5725/thumbnail.jp

    Phenotypic spectrum in osteogenesis imperfecta due to mutations in TMEM38B: unravelling a complex cellular defect.

    Get PDF
    Context: Recessive mutations in TMEM38B cause type XIV osteogenesis imperfecta (OI) by dysregulating intracellular calcium flux. Objectives: Clinical and bone material phenotype description and osteoblast differentiation studies. Design and Setting: Natural history study in paediatric research centres. Patients: Eight patients with type XIV OI. Main Outcome Measures: Clinical examinations included: bone mineral density, radiographs, echocardiography and muscle biopsy. Bone biopsy samples (n=3) were analysed using histomorphometry, quantitative backscattered electron microscopy and Raman microspectroscopy. Cellular differentiation studies were performed on proband and control osteoblasts and normal murine osteoclasts. Results: The clinical phenotype of type XIV OI ranges from asymptomatic to severe. Previously unreported features include vertebral fractures, periosteal cloaking, coxa vara and extraskeletal features (muscular hypotonia, cardiac abnormalities). Proband L1-L4 bone density Z-score was reduced (median -3.3 [range -4.77 to +0.1; n=7]), and increased by +1.7 (1.17 to 3.0; n=3) following bisphosphonate therapy. TMEM38B mutant bone has reduced trabecular bone volume, osteoblast and particularly osteoclast numbers, with >80% reduction in bone resorption. Bone matrix mineralization is normal and nanoporosity low. We demonstrate a complex osteoblast differentiation defect with decreased expression of early markers and increased late and mineralization-related markers. Predominance of TRIC-B over TRIC-A expression in murine osteoclasts supports an intrinsic osteoclast defect underlying low bone turnover. Conclusions: OI type XIV has a bone histology, matrix mineralization and osteoblast differentiation pattern that is distinct from OI with collagen defects. Probands are responsive to bisphosphonates and some show muscular and cardiovascular features possibly related to intracellular calcium flux abnormalities

    The use of next generation sequencing in rare disease

    Get PDF
    Introduction: High throughput next generation sequencing (NGS) strategies such as whole exome sequencing (WES) are frequently used in medical research to identify the molecular cause of Mendelian genetic disease. WES, or clinical exome sequencing strategies are now being adopted into clinical genetics practice. This study focuses on the application of WES for genetic diagnosis in a group of mainly consanguineous families with rare phenotypes for which an autosomal recessively inherited disease was suspected but the molecular basis was unknown. Materials and methods: Families were recruited retrospectively from a previous research cohort (the National Autozygosity Mapping study) and prospectively from the Birmingham Women’s and Children’s NHS Foundation Trust. WES was subsequently performed. Results: 35 families with rare genetic disorders were studied by WES (in 9 families a single individual underwent sequencing). After bioinformatics analysis of WES data and detailed reassessment of the phenotype a molecular genetic diagnosis was reached in 15 families (42.9%). Conclusion: WES is an effective strategy for identifying the molecular basis of recessively inherited disorders in consanguineous families. The combination of WES with detailed phenotyping significantly improved variant interpretation and diagnostic yield over WES alone

    Seminaphthofluorescein-Based Fluorescent Probes for Imaging Nitric Oxide in Live Cells

    Get PDF
    Fluorescent turn-on probes for nitric oxide based on seminaphthofluorescein scaffolds were prepared and spectroscopically characterized. The Cu(II) complexes of these fluorescent probes react with NO under anaerobic conditions to yield a 20–45-fold increase in integrated emission. The seminaphthofluorescein-based probes emit at longer wavelengths than the parent FL1 and FL2 fluorescein-based generations of NO probes, maintaining emission maxima between 550 and 625 nm. The emission profiles depend on the excitation wavelength; maximum fluorescence turn-on is achieved at excitations between 535 and 575 nm. The probes are highly selective for NO over other biologically relevant reactive nitrogen and oxygen species including NO3–, NO2–, HNO, ONOO–, NO2, OCl–, and H2O2. The seminaphthofluorescein-based probes can be used to visualize endogenously produced NO in live cells, as demonstrated using Raw 264.7 macrophages.National Science Foundation (U.S.) (CHE-0611944)National Institutes of Health (U.S.) (K99GM092970
    corecore