46 research outputs found

    Visual stimulus parameters seriously compromise the measurement of approximate number system acuity and comparative effects between adults and children

    Get PDF
    It has been suggested that a simple non-symbolic magnitude comparison task is sufficient to measure the acuity of a putative Approximate Number System (ANS). A proposed measure of the ANS, the so-called “internal Weber fraction” (w), would provide a clear measure of ANS acuity. However, ANS studies have never presented adequate evidence that visual stimulus parameters did not compromise measurements of w to such extent that w is actually driven by visual instead of numerical processes. We therefore investigated this question by testing non-symbolic magnitude discrimination in seven-year-old children and adults. We manipulated/controlled visual parameters in a more stringent manner than usual. As a consequence of these controls, in some trials numerical cues correlated positively with number while in others they correlated negatively with number. This congruency effect strongly correlated with w, which means that congruency effects were probably driving effects in w. Consequently, in both adults and children congruency had a major impact on the fit of the model underlying the computation of w. Furthermore, children showed larger congruency effects than adults. This suggests that ANS tasks are seriously compromised by the visual stimulus parameters, which cannot be controlled. Hence, they are not pure measures of the ANS and some putative w or ratio effect differences between children and adults in previous ANS studies may be due to the differential influence of the visual stimulus parameters in children and adults. In addition, because the resolution of congruency effects relies on inhibitory (interference suppression) function, some previous ANS findings were probably influenced by the developmental state of inhibitory processes especially when comparing children with developmental dyscalculia and typically developing children

    False Approximations of the Approximate Number System?

    Get PDF
    Prior research suggests that the acuity of the approximate number system (ANS) predicts future mathematical abilities. Modelling the development of the ANS might therefore allow monitoring of children's mathematical skills and instigate educational intervention if necessary. A major problem however, is that our knowledge of the development of the ANS is acquired using fundamentally different paradigms, namely detection in infants versus discrimination in children and adults. Here, we question whether such a comparison is justified, by testing the adult ANS with both a discrimination and a detection task. We show that adults perform markedly better in the discrimination compared to the detection task. Moreover, performance on discrimination but not detection, correlated with performance on mathematics. With a second similar experiment, in which the detection task was replaced by a same-different task, we show that the results of experiment 1 cannot be attributed to differences in chance level. As only task instruction differed, the discrimination and the detection task most likely reflect differences at the decisional level. Future studies intending to model the development of the ANS should therefore rely on data derived from a single paradigm for different age groups. The same-different task appears a viable candidate, due to its applicability across age groups

    The Role of Visual Information in Numerosity Estimation

    Get PDF
    Mainstream theory suggests that the approximate number system supports our non-symbolic number abilities (e.g. estimating or comparing different sets of items). It is argued that this system can extract number independently of the visual cues present in the stimulus (diameter, aggregate surface, etc.). However, in a recent report we argue that this might not be the case. We showed that participants combined information from different visual cues to derive their answers. While numerosity comparison requires a rough comparison of two sets of items (smaller versus larger), numerosity estimation requires a more precise mechanism. It could therefore be that numerosity estimation, in contrast to numerosity comparison, might rely on the approximate number system. To test this hypothesis, we conducted a numerosity estimation experiment. We controlled for the visual cues according to current standards: each single visual property was not informative about numerosity. Nevertheless, the results reveal that participants were influenced by the visual properties of the dot arrays. They gave a larger estimate when the dot arrays consisted of dots with, on average, a smaller diameter, aggregate surface or density but a larger convex hull. The reliance on visual cues to estimate numerosity suggests that the existence of an approximate number system that can extract numerosity independently of the visual cues is unlikely. Instead, we propose that humans estimate numerosity by weighing the different visual cues present in the stimuli

    Incongruence in number–luminance congruency effects

    Get PDF
    Congruency tasks have provided support for an amodal magnitude system for magnitudes that have a “spatial” character, but conflicting results have been obtained for magnitudes that do not (e.g., luminance). In this study, we extricated the factors that underlie these number–luminance congruency effects and tested alternative explanations: (unsigned) luminance contrast and saliency. When luminance had to be compared under specific task conditions, we revealed, for the first time, a true influence of number on luminance judgments: Darker stimuli were consistently associated with numerically larger stimuli. However, when number had to be compared, luminance contrast, not luminance, influenced number judgments. Apparently, associations exist between number and luminance, as well as luminance contrast, of which the latter is probably stronger. Therefore, similar tasks, comprising exactly the same stimuli, can lead to distinct interference effects

    The interplay between nonsymbolic number and its continuous visual properties.

    Full text link

    Numerosities and space; indeed a cognitive illusion! A reply to de Hevia and Spelke (2009)

    No full text
    de Hevia and Spelke (de Hevia and Spelke (2009). Spontaneous mapping of number and space in adults and young children, Cognition, 110, 198-207) investigated the mapping of number onto space. To this end, they introduced a non-symbolic flanker task. Here subjects have to bisect a line that is flanked by a 2-dot and a 9-dot array. Similar to the symbolic line bisection task, a bias towards the larger numerosity was observed. We re-investigated these results both by creating new flanker stimuli that controlled for different (non-numerical) stimulus properties and by developing a new measurement tool. We demonstrate that the bisection bias was caused by the larger area subtended by the 9-dot array compared to the 2-dot array and not numerosity. Our study puts constraints on the results of the study by de Hevia and Spelke. The role of visual cues in numerosity processing in general is discussed. © 2011 Elsevier B.V.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore