467 research outputs found
Horizontal flow fields observed in Hinode G-band images. I. Methods
Context: The interaction of plasma motions and magnetic fields is an
important mechanism, which drives solar activity in all its facets. For
example, photospheric flows are responsible for the advection of magnetic flux,
the redistribution of flux during the decay of sunspots, and the built-up of
magnetic shear in flaring active regions. Aims: Systematic studies based on
G-band data from the Japanese Hinode mission provide the means to gather
statistical properties of horizontal flow fields. This facilitates comparative
studies of solar features, e.g., G-band bright points, magnetic knots, pores,
and sunspots at various stages of evolution and in distinct magnetic
environments, thus, enhancing our understanding of the dynamic Sun. Methods: We
adapted Local Correlation Tracking (LCT) to measure horizontal flow fields
based on G-band images obtained with the Solar Optical Telescope on board
Hinode. In total about 200 time-series with a duration between 1-16 h and a
cadence between 15-90 s were analyzed. Selecting both a high-cadence (dt = 15
s) and a long-duration (dT = 16 h) time-series enabled us to optimize and
validate the LCT input parameters, hence, ensuring a robust, reliable, uniform,
and accurate processing of a huge data volume. Results: The LCT algorithm
produces best results for G-band images having a cadence of 60-90 s. If the
cadence is lower, the velocity of slowly moving features will not be reliably
detected. If the cadence is higher, the scene on the Sun will have evolved too
much to bear any resemblance with the earlier situation. Consequently, in both
instances horizontal proper motions are underestimated. The most reliable and
yet detailed flow maps are produced using a Gaussian kernel with a size of 2560
km x 2560 km and a full-width-at-half-maximum (FWHM) of 1200 km (corresponding
to the size of a typical granule) as sampling window.Comment: 12 pages, 8 figures, 4 tables, accepted for publication in Astronomy
and Astrophysic
A Tale Of Two Spicules: The Impact of Spicules on the Magnetic Chromosphere
We use high-resolution observations of the Sun in Ca II H 3968 A from the
Solar Optical Telescope on Hinode to show that there are at least two types of
spicules that dominate the structure of the magnetic solar chromosphere. Both
types are tied to the relentless magnetoconvective driving in the photosphere,
but have very different dynamic properties. ``Type-I'' spicules are driven by
shock waves that form when global oscillations and convective flows leak into
the upper atmosphere along magnetic field lines on 3-7 minute timescales.
``Type-II'' spicules are much more dynamic: they form rapidly (in ~10s), are
very thin (<200km wide), have lifetimes of 10-150s (at any one height) and seem
to be rapidly heated to (at least) transition region temperatures, sending
material through the chromosphere at speeds of order 50-150 km/s. The
properties of Type II spicules suggest a formation process that is a
consequence of magnetic reconnection, typically in the vicinity of magnetic
flux concentrations in plage and network. Both types of spicules are observed
to carry Alfven waves with significant amplitudes of order 20 km/s.Comment: 8 pages, 5 figures, accepted for Hinode special issue of PAS
Tempo and mode of performance evolution across multiple independent origins of adhesive toe pads in lizards
Understanding macroevolutionary dynamics of trait evolution is an important endeavor in evolutionary biology. Ecological opportunity can liberate a trait as it diversifies through trait space, while genetic and selective constraints can limit diversification. While many studies have examined the dynamics of morphological traits, diverse morphological traits may yield the same or similar performance and as performance is often more proximately the target of selection, examining only morphology may give an incomplete understanding of evolutionary dynamics. Here, we ask whether convergent evolution of pad‐bearing lizards has followed similar evolutionary dynamics, or whether independent origins are accompanied by unique constraints and selective pressures over macroevolutionary time. We hypothesized that geckos and anoles each have unique evolutionary tempos and modes. Using performance data from 59 species, we modified Brownian motion (BM) and Ornstein–Uhlenbeck (OU) models to account for repeated origins estimated using Bayesian ancestral state reconstructions. We discovered that adhesive performance in geckos evolved in a fashion consistent with Brownian motion with a trend, whereas anoles evolved in bounded performance space consistent with more constrained evolution (an Ornstein–Uhlenbeck model). Our results suggest that convergent phenotypes can have quite distinctive evolutionary patterns, likely as a result of idiosyncratic constraints or ecological opportunities
Homologous Helical Jets: Observations by IRIS, SDO and Hinode and Magnetic Modeling with Data-Driven Simulations
We report on observations of recurrent jets by instruments onboard the
Interface Region Imaging Spectrograph (IRIS), Solar Dynamics Observatory (SDO)
and Hinode spacecrafts. Over a 4-hour period on July 21st 2013, recurrent
coronal jets were observed to emanate from NOAA Active Region 11793. FUV
spectra probing plasma at transition region temperatures show evidence of
oppositely directed flows with components reaching Doppler velocities of +/-
100 km/s. Raster Doppler maps using a Si IV transition region line show all
four jets to have helical motion of the same sense. Simultaneous observations
of the region by SDO and Hinode show that the jets emanate from a source region
comprising a pore embedded in the interior of a supergranule. The parasitic
pore has opposite polarity flux compared to the surrounding network field. This
leads to a spine-fan magnetic topology in the coronal field that is amenable to
jet formation. Time-dependent data-driven simulations are used to investigate
the underlying drivers for the jets. These numerical experiments show that the
emergence of current-carrying magnetic field in the vicinity of the pore
supplies the magnetic twist needed for recurrent helical jet formation.Comment: 15 pages, 10 figures, accepted by Ap
Sparkling extreme-ultraviolet bright dots observed with Hi-C
Observing the Sun at high time and spatial scales is a step toward understanding the finest and fundamental scales of heating events in the solar corona. The high-resolution coronal (Hi-C) instrument has provided the highest spatial and temporal resolution images of the solar corona in the EUV wavelength range to date. Hi-C observed an active region on 2012 July 11 that exhibits several interesting features in the EUV line at 193 Å. One of them is the existence of short, small brightenings "sparkling" at the edge of the active region; we call these EUV bright dots (EBDs). Individual EBDs have a characteristic duration of 25 s with a characteristic length of 680 km. These brightenings are not fully resolved by the SDO/AIA instrument at the same wavelength; however, they can be identified with respect to the Hi-C location of the EBDs. In addition, EBDs are seen in other chromospheric/coronal channels of SDO/AIA, which suggests a temperature between 0.5 and 1.5 MK. Based on their frequency in the Hi-C time series, we define four different categories of EBDs: single peak, double peak, long duration, and bursty. Based on a potential field extrapolation from an SDO/HMI magnetogram, the EBDs appear at the footpoints of large-scale, trans-equatorial coronal loops. The Hi-C observations provide the first evidence of small-scale EUV heating events at the base of these coronal loops, which have a free magnetic energy of the order of 1026 erg. © 2014. The American Astronomical Society. All rights reserved
Genetic dissection of the miR-200–Zeb1 axis reveals its importance in tumor differentiation and invasion
The epithelial-to-mesenchymal transition (EMT) is an important mechanism for cancer progression and metastasis. Numerous in vitro and tumor-profiling studies point to the miR-200–Zeb1 axis as crucial in regulating this process, yet in vivo studies involving its regulation within a physiological context are lacking. Here, we show that miR-200 ablation in the Rip-Tag2 insulinoma mouse model induces beta-cell dedifferentiation, initiates an EMT expression program, and promotes tumor invasion. Strikingly, disrupting the miR-200 sites of the endogenous Zeb1 locus causes a similar phenotype. Reexpressing members of the miR-200 superfamily in vitro reveals that the miR-200c family and not the co-expressed and closely related miR-141 family is responsible for regulation of Zeb1 and EMT. Our results thus show that disrupting the in vivo regulation of Zeb1 by miR-200c is sufficient to drive EMT, thus highlighting the importance of this axis in tumor progression and invasion and its potential as a therapeutic target.National Institute of General Medical Sciences (U.S.
Fully resolved quiet-Sun magnetic flux tube observed with the Sunrise IMaX instrument
Until today, the small size of magnetic elements in quiet Sun areas has
required the application of indirect methods, such as the line-ratio technique
or multi-component inversions, to infer their physical properties. A consistent
match to the observed Stokes profiles could only be obtained by introducing a
magnetic filling factor that specifies the fraction of the observed pixel
filled with magnetic field. Here, we investigate the properties of a small
magnetic patch in the quiet Sun observed with the IMaX magnetograph on board
the balloon-borne telescope Sunrise with unprecedented spatial resolution and
low instrumental stray light. We apply an inversion technique based on the
numerical solution of the radiative transfer equation to retrieve the
temperature stratification and the field strength in the magnetic patch. The
observations can be well reproduced with a one-component, fully magnetized
atmosphere with a field strength exceeding 1 kG and a significantly enhanced
temperature in the mid- to upper photosphere with respect to its surroundings,
consistent with semi-empirical flux tube models for plage regions. We therefore
conclude that, within the framework of a simple atmospheric model, the IMaX
measurements resolve the observed quiet-Sun flux tube.Comment: Accepted for publication in The Astrophysical Journal Letters on Aug
11 201
Eighteen microsatellite loci developed from western burrowing owls (Athene cunicularia hypugaea)
Western burrowing owls (Athene cunicularia hypugaea) are ground-dwelling owls distributed throughout western North America. Because of population declines, this species is considered endangered in Canada, and burrowing owls are listed as a species of conservation concern in states of the western USA. Korfanta et al. (2002) previously presented primers for seven microsatellite loci in burrowing owls. Parentage and relatedness studies require a larger number of markers for accuracy and precision. Here, we developed and characterized 18 additional microsatellite DNA loci, and we tested these loci in 23 individuals. The number of alleles per locus ranged from 2 to 11; two loci deviated from Hardy–Weinberg equilibrium following Bonferroni correction; we did not detect linkage disequilibrium following Bonferroni correction; and the probability of exclusion for parent pairs using all loci was >0.9999. We envision these loci will facilitate detailed analyses of the genetic mating system of burrowing owls, which is poorly understood
An Interface Region Imaging Spectrograph first view on Solar Spicules
Solar spicules have eluded modelers and observers for decades. Since the
discovery of the more energetic type II, spicules have become a heated topic
but their contribution to the energy balance of the low solar atmosphere
remains unknown. Here we give a first glimpse of what quiet Sun spicules look
like when observed with NASA's recently launched Interface Region Imaging
Spectrograph (IRIS). Using IRIS spectra and filtergrams that sample the
chromosphere and transition region we compare the properties and evolution of
spicules as observed in a coordinated campaign with Hinode and the Atmospheric
Imaging Assembly. Our IRIS observations allow us to follow the thermal
evolution of type II spicules and finally confirm that the fading of Ca II H
spicules appears to be caused by rapid heating to higher temperatures. The IRIS
spicules do not fade but continue evolving, reaching higher and falling back
down after 500-800 s. Ca II H type II spicules are thus the initial stages of
violent and hotter events that mostly remain invisible in Ca II H filtergrams.
These events have very different properties from type I spicules, which show
lower velocities and no fading from chromospheric passbands. The IRIS spectra
of spicules show the same signature as their proposed disk counterparts,
reinforcing earlier work. Spectroheliograms from spectral rasters also confirm
that quiet Sun spicules originate in bushes from the magnetic network. Our
results suggest that type II spicules are indeed the site of vigorous heating
(to at least transition region temperatures) along extensive parts of the
upward moving spicular plasma.Comment: 6 pages, 4 figures, accepted for publication in ApJ Letters. For
associated movies, see http://folk.uio.no/tiago/iris_spic
- …
