341 research outputs found

    SENSOR ARRAY ABLE TO DETECT AND RECOGNISE CHEMICAL WARFARE AGENTS

    Get PDF
    In this paper we studied a device based on array of six different sensors with surface acoustic wave for detections and recognition of three chemical warfare agents (chloropicrin, soman and lewisite). The sensors are “delay line” type with a center frequency of 69.4 MHz. It presents an original algorithm to identify the nature and concentration of gas from a finite range of possible gases. Numerical program developed to implement this algorithm, provides to operators all the particulars of gas and an indicator of credibility of the results provided as a measure of the degree of disturbance of the signals received from sensors.SAW, chemical warfare agent, array of sensors, algorithm

    X-ray anomalous scattering investigations on the charge order in α\alpha^\prime-NaV2_2O5_5

    Full text link
    Anomalous x-ray diffraction studies show that the charge ordering in α\alpha^\prime-NaV2_2O5_5 is of zig-zag type in all vanadium ladders. We have found that there are two models of the stacking of layers along \emph{c-}direction, each of them consisting of 2 degenerated patterns, and that the experimental data is well reproduced if the 2 patterns appears simultaneously. We believe that the low temperature structure contains stacking faults separating regions corresponding to the four possible patterns.Comment: Submitted to Phys. Rev. Lett., 4 pages, 4 eps figures inserted in the tex

    A vanishing viscosity approach to a rate-independent damage model

    Get PDF
    We analyze a rate-independent model for damage evolution in elastic bodies. The central quantities are a stored energy functional and a dissipation functional, which is assumed to be positively homogeneous of degree one. Since the energy is not simultaneously (strictly) convex in the damage variable and the displacements, solutions may have jumps as a function of time. The latter circumstance makes it necessary to recur to suitable notions of weak solution. However, the by-now classical concept of global energetic solution fails to describe accurately the behavior of the system at jumps. Hence, we consider rate-independent damage models as limits of systems driven by viscous, rate-dependent dissipation. We use a technique for taking the vanishing viscosity limit, which is based on arc-length reparameterization. In this way, in the limit we obtain a novel formulation for the rate-independent damage model, which highlights the interplay of viscous and rate-independent effects in the jump regime, and provides a better description of the energetic behavior of the system at jump

    Efficient high-resolution refinement in cryo-EM with stochastic gradient descent

    Full text link
    Electron cryomicroscopy (cryo-EM) is an imaging technique widely used in structural biology to determine the three-dimensional structure of biological molecules from noisy two-dimensional projections with unknown orientations. As the typical pipeline involves processing large amounts of data, efficient algorithms are crucial for fast and reliable results. The stochastic gradient descent (SGD) algorithm has been used to improve the speed of ab initio reconstruction, which results in a first, low-resolution estimation of the volume representing the molecule of interest, but has yet to be applied successfully in the high-resolution regime, where expectation-maximization algorithms achieve state-of-the-art results, at a high computational cost. In this article, we investigate the conditioning of the optimization problem and show that the large condition number prevents the successful application of gradient descent-based methods at high resolution. Our results include a theoretical analysis of the condition number of the optimization problem in a simplified setting where the individual projection directions are known, an algorithm based on computing a diagonal preconditioner using Hutchinson's diagonal estimator, and numerical experiments showing the improvement in the convergence speed when using the estimated preconditioner with SGD. The preconditioned SGD approach can potentially enable a simple and unified approach to ab initio reconstruction and high-resolution refinement with faster convergence speed and higher flexibility, and our results are a promising step in this direction.Comment: 22 pages, 7 figure

    Summary of the BDS and MDI CLIC08 Working Group

    Get PDF
    This note summarizes the presentations held within the Beam Delivery System and Machine Detector Interface working group of the CLIC08 workshop. The written contributions have been provided by the presenters on a voluntary basis

    Analysis of the Steinmetz compensation circuit with distorted waveforms through symmetrical component-based indicators

    Get PDF
    This paper deals with the use of a set of indicators defined within a symmetrical component-based framework to study the characteristics of the Steinmetz compensation circuit in the presence of waveform distortion. The Steinmetz circuit is applied to obtain balanced currents in a three-phase system supplying a single-phase load. The circuit is analyzed without and with harmonic distortion of the supply voltages. The compensation effect is represented by the classical unbalance factor and by the Total Phase Unbalance (TPU) indicator defined in the symmetrical component-based framework. Comparing the two indicators, it is shown that the classical unbalance factor is insufficient to represent the effect of voltage distortion and fails to detect the lack of total unbalance compensation occurring with distorted waveforms. Correct information is provided by calculating the TPU indicator. © 2009 IEEE
    corecore