147 research outputs found
Reduction of lattice thermal conductivity from planar faults in the layered Zintl compound SrZnSb_2
The layered Zintl compound SrZnSb_2 is investigated using transmission electron microscopy (TEM) to understand the low lattice thermal conductivity. The material displays out-of-phase boundaries with a spacing from 100 down to 2 nm. Density functional theory calculations confirm that the TEM-derived defect structure is energetically reasonable. The impact of these defects on phonon scattering is analyzed within the Debye–Callaway model, which reveals a significant reduction in the acoustic phonon mean free path. This enhancement in phonon scattering leads to an ~30% reduction in lattice thermal conductivity at 300 K
Thermoelectric properties of Zn_5Sb_4In_(2-δ)(δ=0.15)
The polymorphic intermetallic compound Zn_5Sb_4In_(2−δ) (δ = 0.15(3)) shows promising thermoelectric properties at low temperatures, approaching a figure of merit ZT of 0.3 at 300 K. However, thermopower and electrical resistivity changes discontinuously at around 220 K. Measurement of the specific heat locates the previously unknown temperature of the order-disorder phase transition at around 180 K. Investigation of the charge carrier concentration and mobility by Hall measurements and infrared reflection spectroscopy indicate a mixed conduction behavior and the activation of charge carriers at temperatures above 220 K. Zn_5Sb_4In_(2−δ) has a low thermal stability, and at temperatures above 470 K samples decompose into a mixture of Zn, InSb, and Zn_4Sb_3
Magnetodielectric coupling in Mn3O4
We have investigated the dielectric anomalies associated with spin ordering
transitions in the tetragonal spinel MnO, using thermodynamic,
magnetic, and dielectric measurements. We find that two of the three magnetic
ordering transitions in MnO lead to decreases in the temperature
dependent dielectric constant at zero applied field. Applying a magnetic field
to the polycrystalline sample leaves these two dielectric anomalies practically
unchanged, but leads to an increase in the dielectric constant at the
intermediate spin-ordering transition. We discuss possible origins for this
magnetodielectric behavior in terms of spin-phonon coupling. Band structure
calculations suggest that in its ferrimagnetic state, MnO corresponds
to a semiconductor with no orbital degeneracy due to strong Jahn-Teller
distortion.Comment: 6 pages, 7 figure
Improved Thermoelectric Cooling Based on the Thomson Effect
Traditional thermoelectric Peltier coolers exhibit a cooling limit which is
primarily determined by the figure of merit, zT. Rather than a fundamental
thermodynamic limit, this bound can be traced to the difficulty of maintaining
thermoelectric compatibility. Self-compatibility locally maximizes the cooler's
coefficient of performance for a given zT and can be achieved by adjusting the
relative ratio of the thermoelectric transport properties that make up zT. In
this study, we investigate the theoretical performance of thermoelectric
coolers that maintain self-compatibility across the device. We find such a
device behaves very differently from a Peltier cooler, and term self-compatible
coolers "Thomson coolers" when the Fourier heat divergence is dominated by the
Thomson, as opposed to the Joule, term. A Thomson cooler requires an
exponentially rising Seebeck coefficient with increasing temperature, while
traditional Peltier coolers, such as those used commercially, have
comparatively minimal change in Seebeck coefficient with temperature. When
reasonable material property bounds are placed on the thermoelectric leg, the
Thomson cooler is predicted to achieve approximately twice the maximum
temperature drop of a traditional Peltier cooler with equivalent figure of
merit (zT). We anticipate the development of Thomson coolers will ultimately
lead to solid state cooling to cryogenic temperatures.Comment: The Manuscript has been revised for publication in PR
Occupational disorder as the origin of flattening of the acoustic phonon branches in the clathrate Ba8Ga16Ge30
Solar thermoelectricity Via Advanced Latent Heat Storage
An aspect of the present disclosure is a system that includes a thermal valve having a first position and a second position, a heat transfer fluid, and an energy converter where, when in the first position, the thermal valve prevents the transfer of heat from the heat transfer fluid to the energy converter, and when in the second position, the thermal valve allows the transfer of heat from the heat transfer fluid to the energy converter, such that at least a portion of the heat transferred is converted to electricity by the energy converter
Nanoscale inclusions in the phonon glass thermoelectric material
We have investigated the thermoelectric material Zn 4 Sb 3 using transmission electron microscopy (TEM). Nanoscale inclusions with a diameter of about 10 nm were observed, constituting on the order of 1% by volume of the material. Studies using energy filtered imaging, electron diffraction, and high-angle annular dark-field STEM indicate that the inclusions consist of Zn. These inclusions are expected to scatter the medium and long-wavelength phonons effectively, thus contributing to phonon glass behavior which results in the exceptionally low thermal conductivity for this thermoelectric material
Response to “Comment on ‘Effective thermal conductivity in thermoelectric materials’” [J. Appl. Phys. 113
Effects of disorder on carrier transport in Cu2SnS3
In recent years, further improvements in the efficiency of Cu2ZnSn S,Se 4 photovoltaic devices have been hampered due to several materials issues, including cation disorder. Cu2SnS3 is a promising new absorber material that has attracted significant interest in recent years. However, similar to CZTS, Cu2SnS3 displays cation disorder. In this work, we develop synthetic techniques to control the disorder in Cu2SnS3 thin films. By manipulating the disorder in this material, we observe crystal structure changes and detect improvements in the majority carrier hole transport. However, when the minority carrier electron transport was investigated using optical pump terahertz probe spectroscopy, minimal differences were observed between the ordered and disordered Cu2SnS3. By combining these results with first principles and Monte Carlo theoretical calculations, we are able to conclude that even ostensibly ordered Cu2SnS3 displays minority carrier transport properties corresponding to the disordered structure. The presence of extended planar defects in all samples, observed in TEM imaging, suggests that disorder is present even when it is not detectable using traditional structural characterization methods. The results of this study highlight some of the challenges to the further improvement of Cu2SnS3 based photovoltaics, and have implications for other disordered multinary semiconductors such as CZT
Anisotropic proximity–induced superconductivity and edge supercurrent in Kagome metal, K<sub>1−x</sub>V<sub>3</sub>Sb<sub>5</sub>
Materials with Kagome nets are of particular importance for their potential combination of strong correlation, exotic magnetism, and electronic topology. KV3Sb5 was discovered to be a layered topological metal with a Kagome net of vanadium. Here, we fabricated Josephson Junctions of K1−xV3Sb5 and induced superconductivity over long junction lengths. Through magnetoresistance and current versus phase measurements, we observed a magnetic field sweeping direction–dependent magnetoresistance and an anisotropic interference pattern with a Fraunhofer pattern for in-plane magnetic field but a suppression of critical current for out-of-plane magnetic field. These results indicate an anisotropic internal magnetic field in K1−xV3Sb5 that influences the superconducting coupling in the junction, possibly giving rise to spin-triplet superconductivity. In addition, the observation of long-lived fast oscillations shows evidence of spatially localized conducting channels arising from edge states. These observations pave the way for studying unconventional superconductivity and Josephson device based on Kagome metals with electron correlation and topology
- …
